15,947 research outputs found

    Negative thermal expansion in the Prussian Blue analog Zn3[Fe(CN)6]2: X-ray diffraction and neutron vibrational studies

    Full text link
    The cubic Prussian Blue (PB) analog, Zn3 [Fe(CN)6]2, has been studied by X-ray powder diffraction and inelastic neutron scattering (INS). X-ray data collected at 300 and 84 K revealed negative thermal expansion (NTE) behaviour for this material. The NTE coefficient was found to be -31.1 x 10-6 K-1. The neutron vibrational spectrum for Zn3[Fe(CN)6]2.xH2O, was studied in detail. The INS spectrum showed well-defined, well-separated bands corresponding to the stretching of and deformation modes of the Fe and Zn octahedra, all below 800 cm-1.Comment: 4 pages, 3 figure

    Dynamical quantum phase transition of a two-component Bose-Einstein condensate in an optical lattice

    Full text link
    We study dynamics of a two-component Bose-Einstein condensate where the two components are coupled via an optical lattice. In particular, we focus on the dynamics as one drives the system through a critical point of a first order phase transition characterized by a jump in the internal populations. Solving the time-dependent Gross-Pitaevskii equation, we analyze; breakdown of adiabaticity, impact of non-linear atom-atom scattering, and the role of a harmonic trapping potential. Our findings demonstrate that the phase transition is resilient to both contact interaction between atoms and external trapping confinement.Comment: 8 pages, 8 figure

    The Angular Resolution of Space-Based Gravitational Wave Detectors

    Full text link
    Proposed space-based gravitational wave antennas involve satellites arrayed either in an equilateral triangle around the earth in the ecliptic plane (the ecliptic-plane option) or in an equilateral triangle orbiting the sun in such a way that the plane of the triangle is tilted at 60 degrees relative to the ecliptic (the precessing-plane option). In this paper, we explore the angular resolution of these two classes of detectors for two kinds of sources (essentially monochromatic compact binaries and coalescing massive-black-hole binaries) using time-domain expressions for the gravitational waveform that are accurate to 4/2 PN order. Our results display an interesting effect not previously reported in the literature, and underline the importance of including the higher-order PN terms in the waveform when predicting the angular resolution of ecliptic-plane detector arrays.Comment: 13 pages, 6 figures, submitted to Phys Rev D. The current version corrects an error in our original paper and adds some clarifying language. The error also required correction of the graphs now shown in Figures 3 through

    Population polygons of tektite specific gravity for various localities in australasia

    Get PDF
    Comparison of specific gravity of tektites from australia, asia, texas, and czechoslovaki

    Estimating Production Risk and Inefficiency Simultaneously: An Application to Cotton Cropping Systems

    Get PDF
    By using a stochastic frontier framework, the mutual effect of input use on production risk and inefficiency is investigated. Disentangling this mutual effect proves important for empirical reasons, at least when applied to west Tennessee cotton systems grown after various cover crops. The most striking result is that the stochastic frontier model, when compared with a typical Just-Pope model, reorders the relative riskiness of cover-crop regimes associated with the cotton systems.cotton, inefficiency, Just-Pope, production risk, stochastic production frontier, Production Economics,

    High temperature measuring device

    Get PDF
    Ultrasonic pulse technique for measuring average gas temperature in nuclear rocket engine - sound propagation and environmental studie

    Gravitational Radiation from Black Hole Binaries in Globular Clusters

    Get PDF
    A populations of stellar mass black hole binaries may exist in globular clusters. The dynamics of globular cluster evolution imply that there may be at most one black hole binary is a globular cluster. The population of binaries are expected to have orbital periods greater than a few hours and to have a thermal distribution of eccentricities. In the LISA band, the gravitational wave signal from these binaries will consist of several of the higher harmonics of the orbital frequency. A Monte Carlo simulation of the galactic globular cluster system indicates that LISA will detect binaries in 10 % of the clusters with an angular resolution sufficient to identify the host cluster of the binary.Comment: 7 pages, 2 eps figures, uses iopart styl

    LISA, binary stars, and the mass of the graviton

    Get PDF
    We extend and improve earlier estimates of the ability of the proposed LISA (Laser Interferometer Space Antenna) gravitational wave detector to place upper bounds on the graviton mass, m_g, by comparing the arrival times of gravitational and electromagnetic signals from binary star systems. We show that the best possible limit on m_g obtainable this way is ~ 50 times better than the current limit set by Solar System measurements. Among currently known, well-understood binaries, 4U1820-30 is the best for this purpose; LISA observations of 4U1820-30 should yield a limit ~ 3-4 times better than the present Solar System bound. AM CVn-type binaries offer the prospect of improving the limit by a factor of 10, if such systems can be better understood by the time of the LISA mission. We briefly discuss the likelihood that radio and optical searches during the next decade will yield binaries that more closely approach the best possible case.Comment: ReVTeX 4, 6 pages, 1 figure, submitted to Phys Rev
    corecore