20,165 research outputs found
Evaluating some computer enhancement algorithms that improve the visibility of cometary morphology
The observed morphology of cometary comae is determined by ejection circumstances and the interaction of the ejected material with the local environment. Anisotropic emission can provide useful information on such things as orientation of the nucleus, location of active areas on the nucleus, and the formation of ion structure near the nucleus. However, discrete coma features are usually diffuse, of low amplitude, and superimposed on a steep intensity gradient radial to the nucleus. To improve the visibility of these features, a variety of digital enhancement algorithms were employed with varying degrees of success. They usually produce some degree of spatial filtering, and are chosen to optimize visibility of certain detail. Since information in the image is altered, it is important to understand the effects of parameter selection and processing artifacts can have on subsequent interpretation. Using the criteria that the ideal algorithm must enhance low contrast features while not introducing misleading artifacts (or features that cannot be seen in the stretched, unprocessed image), the suitability of various algorithms that aid cometary studies were assessed. The strong and weak points of each are identified in the context of maintaining positional integrity of features at the expense of photometric information
CO2 laser waveguiding in proton implanted GaAs
Surface layers capable of supporting optical modes at 10.6 microns have been produced in n-type GaAs wafers through 300 keV proton implantation. The dominant mechanism for this effect appears to be free carrier compensation. Characterization of the implanted layers by analysis of infrared reflectivity spectra and synchronous coupling at 10.6 microns produced results in good agreement with elementary models. These results of sample characterization by infrared reflectivity and by CO2 laser waveguiding as implanted are presented and evaluated
Radar data processing and analysis
Digitized four-channel radar images corresponding to particular areas from the Phoenix and Huntington test sites were generated in conjunction with prior experiments performed to collect X- and L-band synthetic aperture radar imagery of these two areas. The methods for generating this imagery are documented. A secondary objective was the investigation of digital processing techniques for extraction of information from the multiband radar image data. Following the digitization, the remaining resources permitted a preliminary machine analysis to be performed on portions of the radar image data. The results, although necessarily limited, are reported
A Relativistic Version of the Two-Level Atom in the Rest-Frame Instant Form of Dynamics
We define a relativistic version of the two-level atom, in which an extended
atom is replaced by a point particle carrying suitable Grassmann variables for
the description of the two-level structure and of the electric dipole. After
studying the isolated system "atom plus the electro-magnetic field" in the
electric-dipole representation as a parametrized Minkowski theory, we give its
restriction to the inertial rest frame and the explicit form of the Poincar\'e
generators. After quantization we get a two-level atom with a spin 1/2 electric
dipole and the relativistic generalization of the Hamiltonians of the Rabi and
Jaynes-Cummings models.Comment: 23 page
Estimating the Impacts of Storage Dry Matter Losses on Switchgrass Production
This poster estimates dry matter losses as a function of harvest method, storage treatment, and time in storage. We then calculate the cost to store switchgrass bales under alternate harvest method and storage treatment scenarios; and determine the breakeven harvest method and storage treatment as a function of biomass price and time in storage.Biomass, bioenergy crops, function form, sustainable systems, Farm Management, Production Economics, Q10, Q42,
Dynamical quantum phase transition of a two-component Bose-Einstein condensate in an optical lattice
We study dynamics of a two-component Bose-Einstein condensate where the two
components are coupled via an optical lattice. In particular, we focus on the
dynamics as one drives the system through a critical point of a first order
phase transition characterized by a jump in the internal populations. Solving
the time-dependent Gross-Pitaevskii equation, we analyze; breakdown of
adiabaticity, impact of non-linear atom-atom scattering, and the role of a
harmonic trapping potential. Our findings demonstrate that the phase transition
is resilient to both contact interaction between atoms and external trapping
confinement.Comment: 8 pages, 8 figure
- …
