19,380 research outputs found
Computer and photogrammetric general land use study of central north Alabama
The object of this report is to acquaint potential users with two computer programs, developed at NASA, Marshall Space Flight Center. They were used in producing a land use survey and maps of central north Alabama from Earth Resources Technology Satellite (ERTS) digital data. The report describes in detail the thought processes and analysis procedures used from the initiation of the land use study to its completion, as well as a photogrammetric study that was used in conjunction with the computer analysis to produce similar land use maps. The results of the land use demonstration indicate that, with respect to computer time and cost, such a study may be economically and realistically feasible on a statewide basis
CDM, Feedback and the Hubble Sequence
We have performed TreeSPH simulations of galaxy formation in a standard LCDM
cosmology, including effects of star formation, energetic stellar feedback
processes and a meta-galactic UV field, and obtain a mix of disk, lenticular
and elliptical galaxies. The disk galaxies are deficient in angular momentum by
only about a factor of two compared to observed disk galaxies. The stellar
disks have approximately exponential surface density profiles, and those of the
bulges range from exponential to r^{1/4}, as observed. The bulge-to-disk ratios
of the disk galaxies are consistent with observations and likewise are their
integrated B-V colours, which have been calculated using stellar population
synthesis techniques. Furthermore, we can match the observed I-band
Tully-Fisher (TF) relation, provided that the mass-to-light ratio of disk
galaxies, (M/L_I), is about 0.8. The ellipticals and lenticulars have
approximately r^{1/4} stellar surface density profiles, are dominated by
non-disklike kinematics and flattened due to non-isotropic stellar velocity
distributions, again consistent with observations.Comment: 6 pages, incl. 4 figs. To appear in the proceedings of the
EuroConference "The Evolution of Galaxies: II - Basic Building Blocks", Ile
de La Reunion (France), 16-21 October 2001 (Slightly updated version). A much
more comprehensive paper about this work with links to pictures of some of
the galaxies can be found at http://babbage.sissa.it/abs/astro-ph/020436
A dynamical and kinematical model of the Galactic stellar halo and possible implications for galaxy formation scenarios
We re-analyse the kinematics of the system of blue horizontal branch field
(BHBF) stars in the Galactic halo (in particular the outer halo), fitting the
kinematics with the model of radial and tangential velocity dispersions in the
halo as a function of galactocentric distance r proposed by Sommer-Larsen,
Flynn & Christensen (1994), using a much larger sample (almost 700) of BHBF
stars. The basic result is that the character of the stellar halo velocity
ellipsoid changes markedly from radial anisotropy at the sun to tangential
anisotropy in the outer parts of the Galactic halo (r greater than approx 20
kpc). Specifically, the radial component of the stellar halo's velocity
ellipsoid decreases fairly rapidly beyond the solar circle, from approx 140 +/-
10 km/s at the sun, to an asymptotic value of 89 +/- 19 km/s at large r. The
rapid decrease in the radial velocity dispersion is matched by an increase in
the tangential velocity dispersion, with increasing r.
Our results may indicate that the Galaxy formed hierarchically (partly or
fully) through merging of smaller subsystems - the 'bottom-up' galaxy formation
scenario, which for quite a while has been favoured by most theorists and
recently also has been given some observational credibility by HST observations
of a potential group of small galaxies, at high redshift, possibly in the
process of merging to a larger galaxy (Pascarelle et al 1996).Comment: Latex, 16 pages. 2 postscript figures. Submitted to the Astrophysical
Journal. also available at http://astro.utu.fi/~cflynn/outerhalo.htm
Continuous star cluster formation in the spiral NGC 45
We determined ages for 52 star clusters with masses < 10^6 solar masses in
the low surface brightness spiral galaxy NGC 45. Four of these candidates are
old globular clusters located in the bulge. The remaining ones span a large age
range. The cluster ages suggest a continuous star/cluster formation history
without evidence for bursts, consistent with the galaxy being located in a
relatively unperturbed environment in the outskirts of the Sculptor group.Comment: 4 pages, 3 figures. To appear in "Island Universes - Structure and
Evolution of Disk Galaxies", Terschelling (Netherlands), July 200
Observations of atmospheric water vapor with the SAGE 2 instrument
The Stratospheric Aerosol and Gas Experiment 2 (SAGE 2) is discussed. The SAGE 2 instrument was a multichannel spectrometer that inferred the vertical distribution of water vapor, aerosols, nitrogen dioxide, and ozone by measuring the extinction of solar radiation at spacecraft sunrise/sunset. At altitudes above 20 km, the SAGE 2 and LIMS (Limb Infrared Monitor of the Stratosphere) data are in close agreement. The discrepancies below this altitude may be attributed to differences in the instruments' field of view and time of data acquisition
Area products for stationary black hole horizons
Area products for multi-horizon stationary black holes often have intriguing
properties, and are often (though not always) independent of the mass of the
black hole itself (depending only on various charges, angular momenta, and
moduli). Such products are often formulated in terms of the areas of inner
(Cauchy) horizons and outer (event) horizons, and sometimes include the effects
of unphysical "virtual" horizons. But the conjectured mass-independence
sometimes fails. Specifically, for the Schwarzschild-de Sitter [Kottler] black
hole in (3+1) dimensions it is shown by explicit exact calculation that the
product of event horizon area and cosmological horizon area is not mass
independent. (Including the effect of the third "virtual" horizon does not
improve the situation.) Similarly, in the Reissner-Nordstrom-anti-de Sitter
black hole in (3+1) dimensions the product of inner (Cauchy) horizon area and
event horizon area is calculated (perturbatively), and is shown to be not mass
independent. That is, the mass-independence of the product of physical horizon
areas is not generic. In spherical symmetry, whenever the quasi-local mass m(r)
is a Laurent polynomial in aerial radius, r=sqrt{A/4\pi}, there are
significantly more complicated mass-independent quantities, the elementary
symmetric polynomials built up from the complete set of horizon radii (physical
and virtual). Sometimes it is possible to eliminate the unphysical virtual
horizons, constructing combinations of physical horizon areas that are mass
independent, but they tend to be considerably more complicated than the simple
products and related constructions currently being mooted in the literature.Comment: V1: 16 pages; V2: 9 pages (now formatted in PRD style). Minor change
in title. Extra introduction, background, discussion. Several additional
references; other references updated. Minor typos fixed. This version
accepted for publication in PRD; V3: Minor typos fixed. Published versio
Non-linear optomechanical measurement of mechanical motion
Precision measurement of non-linear observables is an important goal in all
facets of quantum optics. This allows measurement-based non-classical state
preparation, which has been applied to great success in various physical
systems, and provides a route for quantum information processing with otherwise
linear interactions. In cavity optomechanics much progress has been made using
linear interactions and measurement, but observation of non-linear mechanical
degrees-of-freedom remains outstanding. Here we report the observation of
displacement-squared thermal motion of a micro-mechanical resonator by
exploiting the intrinsic non-linearity of the radiation pressure interaction.
Using this measurement we generate bimodal mechanical states of motion with
separations and feature sizes well below 100~pm. Future improvements to this
approach will allow the preparation of quantum superposition states, which can
be used to experimentally explore collapse models of the wavefunction and the
potential for mechanical-resonator-based quantum information and metrology
applications.Comment: 8 pages, 4 figures, extensive supplementary material available with
published versio
Assessing the effects of repeated handling on physiology and condition of semi-precocial nestlings
Repeated exposure to elevated levels of glucocorticoids during development can have long-term detrimental effects on survival and fitness, potentially associated with increased telomere attrition. Nestling birds are regularly handled for ecological research, yet few authors have considered the potential for handling-induced stress to influence hormonally-mediated phenotypic development or bias interpretations of subsequent focal measurements. We experimentally manipulated the handling experience of the semi-precocial nestlings of European Storm Petrel Hydrobates pelagicus to simulate handling in a typical field study and examined cumulative effects on physiology and condition in late postnatal development. Neither baseline corticosterone (the primary glucocorticoid in birds), telomere length nor body condition varied with the number of handling episodes. The absence of a response could be explained if Storm Petrels did not perceive handling to be stressful or if there is dissociation of the hypothalamic-pituitary-adrenal axis from stressful stimuli in early life. Eliciting a response to a stressor may be maladaptive for cavity-dwelling young that are unable to escape or defend themselves. Furthermore, avoiding elevated overall glucocorticoid exposure may be particularly important in a long-lived species, in which accelerated early-life telomere erosion could impact negatively upon longevity. We propose that the level of colony-wide disturbance induced by investigator handling of young could be important in underlining species-specific responses. Storm Petrel nestlings appear unresponsive to investigator handling within the limits of handling in a typical field study and handling at this level should not bias physiological and morphological measurements
Towards a Notion of Distributed Time for Petri Nets
We set the ground for research on a timed extension of Petri nets where time parameters are associated with tokens and arcs carry constraints that qualify the age of tokens required for enabling. The novelty is that, rather than a single global clock, we use a set of unrelated clocks --- possibly one per place --- allowing a local timing as well as distributed time synchronisation. We give a formal definition of the model and investigate properties of local versus global timing, including decidability issues and notions of processes of the respective models
Faint Fuzzy Star Clusters in NGC1023 as Remnants of Merged Star Cluster Complexes
In the lenticular galaxy NGC1023 a third population of globular clusters
(GCs), called faint fuzzies (FFs), was discovered next to the blue and red GC
populations by Larsen & Brodie. While these FFs have colors comparable to the
red population, the new population is fainter, larger (R_eff > 7 pc) and, most
importantly, shows clear signs of co-rotation with the galactic disk of
NGC1023. We present N-body simulations verifying the hypothesis that these
disk-associated FFs are related to the young massive cluster complexes (CCs)
observed by Bastian et. al in M51, who discovered a mass-radius relation for
these CCs. Our models have an initial configuration based on the observations
from M51 and are placed on various orbits in a galactic potential derived for
NGC1023. All computations end up with a stable object containing 10 to 60% of
the initial CC mass after an integration time of 5 Gyr. A conversion to visual
magnitudes demonstrates that the resulting objects cover exactly the observed
range for FFs. Moreover, the simulated objects show projected half-mass radii
between 3.6 and 13.4 pc, in good agreement with the observed FF sizes. We
conclude that objects like the young massive CCs in M51 are likely progenitors
of the FFs observed in NGC1023.Comment: Accepted for publication in Ap
- …