21,496 research outputs found
Asymptotic Derivation and Numerical Investigation of Time-Dependent Simplified Pn Equations
The steady-state simplified Pn (SPn) approximations to the linear Boltzmann
equation have been proven to be asymptotically higher-order corrections to the
diffusion equation in certain physical systems. In this paper, we present an
asymptotic analysis for the time-dependent simplified Pn equations up to n = 3.
Additionally, SPn equations of arbitrary order are derived in an ad hoc way.
The resulting SPn equations are hyperbolic and differ from those investigated
in a previous work by some of the authors. In two space dimensions, numerical
calculations for the Pn and SPn equations are performed. We simulate neutron
distributions of a moving rod and present results for a benchmark problem,
known as the checkerboard problem. The SPn equations are demonstrated to yield
significantly more accurate results than diffusion approximations. In addition,
for sufficiently low values of n, they are shown to be more efficient than Pn
models of comparable cost.Comment: 32 pages, 7 figure
Mapping the Asymmetric Thick Disk: The Hercules Thick Disk Cloud
The stellar asymmetry of faint thick disk/inner halo stars in the first
quadrant first reported by Larsen & Humphreys (1996) and investigated further
by Parker et al. (2003, 2004) has been recently confirmed by SDSS (Juric et al.
2008). Their interpretation of the excess in the star counts as a ringlike
structure, however, is not supported by critical complimentary data in the
fourth quadrant not covered by SDSS. We present stellar density maps from the
Minnesota Automated Plate Scanner (MAPS) Catalog of the POSS I showing that the
overdensity does not extend into the fourth quadrant. The overdensity is most
probably not a ring. It could be due to interaction with the disk bar, evidence
for a triaxial thick disk, or a merger remnant/stream. We call this feature the
Hercules Thick Disk Cloud.Comment: 11 pages, 5 figures, to be published in Astrophysical Journal Letter
Smaller, Closer, Dirtier: Diesel Backup Generators in California
Quantifies the threat to air quality and human health by backup generators, and examines air quality in Los Angeles, San Diego, Sacramento, and Fresno, with some analysis of San Francisco as well
Mapping the Asymmetric Thick Disk I. A Search for Triaxiality
A significant asymmetry in the distribution of faint blue stars in the inner
Galaxy, Quadrant 1 (l = 20 to 45 degrees) compared to Quadrant 4 was first
reported by Larsen & Humphreys (1996). Parker et al (2003, 2004) greatly
expanded the survey to determine its spatial extent and shape and the
kinematics of the affected stars. This excess in the star counts was
subsequently confirmed by Juric et al. (2008) using SDSS data. Possible
explanations for the asymmetry include a merger remnant, a triaxial Thick Disk,
and a possible interaction with the bar in the Disk. In this paper we describe
our program of wide field photometry to map the asymmetry to fainter magnitudes
and therefore larger distances. To search for the signature of triaxiality, we
extended our survey to higher Galactic longitudes. We find no evidence for an
excess of faint blue stars at l > 55 degrees including the faintest magnitude
interval. The asymmetry and star count excess in Quadrant 1 is thus not due to
a triaxial Thick Disk.Comment: 36 pages, 8 figures. Accepted by Astronomical Journa
Mapping the Asymmetric Thick Disk: II Distance, Size and Mass of the Hercules Thick Disk Cloud
The Hercules Thick Disk Cloud (Larsen et al. 2008) was initially discovered
as an excess in the number of faint blue stars between quadrants 1 and 4 of the
Galaxy. The origin of the Cloud could be an interaction with the disk bar, a
triaxial thick disk or a merger remnant or stream. To better map the spatial
extent of the Cloud along the line of sight, we have obtained multi-color UBVR
photometry for 1.2 million stars in 63 fields approximately 1 square degree
each. Our analysis of the fields beyond the apparent boundaries of the excess
have already ruled out a triaxial thick disk as a likely explanation (Larsen,
Humphreys and Cabanela 2010) In this paper we present our results for the star
counts over all of our fields, determine the spatial extent of the over density
across and along the line of sight, and estimate the size and mass of the
Cloud. Using photometric parallaxes, the stars responsible for the excess are
between 1 and 6 kiloparsecs from the Sun, 0.5 -- 4 kpc above the Galactic
plane, and extends approximately 3-4 kiloparsecs across our line of sight. It
is thus a major substructure in the Galaxy. The distribution of the excess
along our sight lines corresponds with the density contours of the bar in the
Disk, and its most distant stars are directly over the bar. We also see through
the Cloud to its far side. Over the entire 500 square degrees of sky containing
the Cloud, we estimate more than 5.6 million stars and 1.9 million solar masses
of material. If the over density is associated with the bar, it would exceed
1.4 billion stars and more than than 50 million solar masses. Finally, we argue
that the Hercules-Aquila Cloud (Belokurov et al. 2007) is actually the Hercules
Thick Disk Cloud.Comment: 52 pages, 13 figure
Instantaneous Pair Theory for High-Frequency Vibrational Energy Relaxation in Fluids
Notwithstanding the long and distinguished history of studies of vibrational
energy relaxation, exactly how it is that high frequency vibrations manage to
relax in a liquid remains somewhat of a mystery. Both experimental and
theoretical approaches seem to say that there is a natural frequency range
associated with intermolecular motions in liquids, typically spanning no more
than a few hundred cm^{-1}. Landau-Teller-like theories explain how a solvent
can absorb any vibrational energy within this "band", but how is it that
molecules can rid themselves of superfluous vibrational energies significantly
in excess of these values? We develop a theory for such processes based on the
idea that the crucial liquid motions are those that most rapidly modulate the
force on the vibrating coordinate -- and that by far the most important of
these motions are those involving what we have called the mutual nearest
neighbors of the vibrating solute. Specifically, we suggest that whenever there
is a single solvent molecule sufficiently close to the solute that the solvent
and solute are each other's nearest neighbors, then the instantaneous
scattering dynamics of the solute-solvent pair alone suffices to explain the
high frequency relaxation. The many-body features of the liquid only appear in
the guise of a purely equilibrium problem, that of finding the likelihood of
particularly effective solvent arrangements around the solute. These results
are tested numerically on model diatomic solutes dissolved in atomic fluids
(including the experimentally and theoretically interesting case of I_2 in Xe).
The instantaneous pair theory leads to results in quantitative agreement with
those obtained from far more laborious exact molecular dynamics simulations.Comment: 55 pages, 6 figures Scheduled to appear in J. Chem. Phys., Jan, 199
Non-linear optomechanical measurement of mechanical motion
Precision measurement of non-linear observables is an important goal in all
facets of quantum optics. This allows measurement-based non-classical state
preparation, which has been applied to great success in various physical
systems, and provides a route for quantum information processing with otherwise
linear interactions. In cavity optomechanics much progress has been made using
linear interactions and measurement, but observation of non-linear mechanical
degrees-of-freedom remains outstanding. Here we report the observation of
displacement-squared thermal motion of a micro-mechanical resonator by
exploiting the intrinsic non-linearity of the radiation pressure interaction.
Using this measurement we generate bimodal mechanical states of motion with
separations and feature sizes well below 100~pm. Future improvements to this
approach will allow the preparation of quantum superposition states, which can
be used to experimentally explore collapse models of the wavefunction and the
potential for mechanical-resonator-based quantum information and metrology
applications.Comment: 8 pages, 4 figures, extensive supplementary material available with
published versio
A dynamical and kinematical model of the Galactic stellar halo and possible implications for galaxy formation scenarios
We re-analyse the kinematics of the system of blue horizontal branch field
(BHBF) stars in the Galactic halo (in particular the outer halo), fitting the
kinematics with the model of radial and tangential velocity dispersions in the
halo as a function of galactocentric distance r proposed by Sommer-Larsen,
Flynn & Christensen (1994), using a much larger sample (almost 700) of BHBF
stars. The basic result is that the character of the stellar halo velocity
ellipsoid changes markedly from radial anisotropy at the sun to tangential
anisotropy in the outer parts of the Galactic halo (r greater than approx 20
kpc). Specifically, the radial component of the stellar halo's velocity
ellipsoid decreases fairly rapidly beyond the solar circle, from approx 140 +/-
10 km/s at the sun, to an asymptotic value of 89 +/- 19 km/s at large r. The
rapid decrease in the radial velocity dispersion is matched by an increase in
the tangential velocity dispersion, with increasing r.
Our results may indicate that the Galaxy formed hierarchically (partly or
fully) through merging of smaller subsystems - the 'bottom-up' galaxy formation
scenario, which for quite a while has been favoured by most theorists and
recently also has been given some observational credibility by HST observations
of a potential group of small galaxies, at high redshift, possibly in the
process of merging to a larger galaxy (Pascarelle et al 1996).Comment: Latex, 16 pages. 2 postscript figures. Submitted to the Astrophysical
Journal. also available at http://astro.utu.fi/~cflynn/outerhalo.htm
Quantum Coherent String States in AdS_3 and SL(2,R) WZWN Model
In this paper we make the connection between semi-classical string
quantization and exact conformal field theory quantization of strings in 2+1
Anti de Sitter spacetime. More precisely, considering the WZWN model
corresponding to SL(2,R) and its covering group, we construct quantum {\it
coherent} string states, which generalize the ordinary coherent states of
quantum mechanics, and show that in the classical limit they correspond to
oscillating circular strings. After quantization, the spectrum is found to
consist of two parts: A continuous spectrum of low mass states (partly
tachyonic) fulfilling the standard spin-level condition necessary for unitarity
|j|< k/2, and a discrete spectrum of high mass states with asymptotic behaviour
m^2\alpha'\propto N^2 (N positive integer). The quantization condition for the
high mass states arises from the condition of finite positive norm of the
coherent string states, and the result agrees with our previous results
obtained using semi-classical quantization. In the k\to\infty limit, all the
usual properties of coherent or {\it quasi-classical} states are recovered. It
should be stressed that we consider the circular strings only for simplicity
and clarity, and that our construction can easily be used for other string
configurations too. We also compare our results with those obtained in the
recent preprint hep-th/0001053 by Maldacena and Ooguri.Comment: Misprints corrected. Final version to appear in Phys. Rev.
- …