16,140 research outputs found

    Stable and Unstable Circular Strings in Inflationary Universes

    Full text link
    It was shown by Garriga and Vilenkin that the circular shape of nucleated cosmic strings, of zero loop-energy in de Sitter space, is stable in the sense that the ratio of the mean fluctuation amplitude to the loop radius is constant. This result can be generalized to all expanding strings (of non-zero loop-energy) in de Sitter space. In other curved spacetimes the situation, however, may be different. In this paper we develop a general formalism treating fluctuations around circular strings embedded in arbitrary spatially flat FRW spacetimes. As examples we consider Minkowski space, de Sitter space and power law expanding universes. In the special case of power law inflation we find that in certain cases the fluctuations grow much slower that the radius of the underlying unperturbed circular string. The inflation of the universe thus tends to wash out the fluctuations and to stabilize these strings.Comment: 15 pages Latex, NORDITA 94/14-

    Monitoring of the prompt radio emission from the unusual supernova 2004dj in NGC2403

    Full text link
    Supernova 2004dj in the nearby spiral galaxy NGC2403 was detected optically in July 2004. Peaking at a magnitude of 11.2, this is the brightest supernova detected for several years. Here we present Multi-Element Radio Linked Interferometer Network (MERLIN) observations of this source, made over a four month period, which give a position of R.A. = 07h37m17.044s, Dec =+65deg35'57.84" (J2000.0). We also present a well-sampled 5 GHz light curve covering the period from 5 August to 2 December 2004. With the exception of the unusual and very close SN 1987A, these observations represent the first detailed radio light curve for the prompt emission from a Type II-P supernova.Comment: (1) Jodrell Bank Observatory (2) University of Valencia (3) University of Sheffield 6 pages, 1 figure. To appear in ApJ letter

    Exact Microscopic Entropy of Non-Supersymmetric Extremal Black Rings

    Full text link
    In this brief note we show that the horizon entropy of the largest known class of non-supersymmetric extremal black rings, with up to six parameters, is exactly reproduced for all values of the ring radius using the same conformal field theory of the four-charge four-dimensional black hole. A particularly simple case is a dipole black ring without any conserved charges. The mass gets renormalized, but the first corrections it receives can be easily understood as an interaction potential energy. Finally, we stress that even if the entropy is correctly reproduced, this only implies that one sector of chiral excitations has been identified, but an understanding of excitations in the other sector is still required in order to capture the black ring dynamics.Comment: 7 pages. v2: minor improvements, ref adde

    Circular String-Instabilities in Curved Spacetime

    Full text link
    We investigate the connection between curved spacetime and the emergence of string-instabilities, following the approach developed by Loust\'{o} and S\'{a}nchez for de Sitter and black hole spacetimes. We analyse the linearised equations determining the comoving physical (transverse) perturbations on circular strings embedded in Schwarzschild, Reissner-Nordstr\"{o}m and de Sitter backgrounds. In all 3 cases we find that the "radial" perturbations grow infinitely for r0r\rightarrow 0 (ring-collapse), while the "angular" perturbations are bounded in this limit. For rr\rightarrow\infty we find that the perturbations in both physical directions (perpendicular to the string world-sheet in 4 dimensions) blow up in the case of de Sitter space. This confirms results recently obtained by Loust\'{o} and S\'{a}nchez who considered perturbations around the string center of mass.Comment: 24 pages Latex + 2 figures (not included). Observatoire de Paris, Meudon No. 9305

    Carbon Stars and other Luminous Stellar Populations in M33

    Full text link
    The M33 galaxy is a nearby, relatively metal-poor, late-type spiral. Its proximity and almost face-on inclination means that it projects over a large area on the sky, making it an ideal candidate for wide-field CCD mosaic imaging. Photometry was obtained for more than 10^6 stars covering a 74' x 56' field centered on M33. Main sequence (MS), supergiant branch (SGB), red giant branch (RGB) and asymptotic giant branch (AGB) populations are identified and classified based on broad-band V and I photometry. Narrow-band filters are used to measure spectral features allowing the AGB population to be further divided into C and M-star types. The galactic structure of M33 is examined using star counts, colour-colour and colour-magnitude selected stellar populations. We use the C to M-star ratio to investigate the metallicity gradient in the disk of M33. The C/M-star ratio is found to increase and then flatten with increasing galactocentric radius in agreement with viscous disk formation models. The C-star luminosity function is found to be similar to M31 and the SMC, suggesting that C-stars should be useful distance indicators. The ``spectacular arcs of carbon stars'' in M33 postulated recently by Block et al. (2004) are found in our work to be simply an extension of M33's disk.Comment: 20 pages, 20 figures. Accepted for publication in The Astronomical Journa

    Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer for the Radiation Belt Storm Probes Mission

    Get PDF
    The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution ΔE FWHM/E≈15 %. The dominant ion species (H+, He+, and O+) of the magnetosphere are identified using foil-based time-of-flight (TOF) mass spectrometry with channel electron multiplier (CEM) detectors. Angular measurements are derived using five polar pixels coplanar with the spacecraft spin axis, and up to 16 azimuthal bins are acquired for each polar pixel over time as the spacecraft spins. Ion and electron measurements are acquired on alternate spacecraft spins. HOPE incorporates several new methods to minimize and monitor the background induced by penetrating particles in the harsh environment of the radiation belts. The absolute efficiencies of detection are continuously monitored, enabling precise, quantitative measurements of electron and ion fluxes and ion species abundances throughout the mission. We describe the engineering approaches for plasma measurements in the radiation belts and present summaries of HOPE measurement strategy and performance

    The Holographic Universe

    Get PDF
    We present a holographic description of four-dimensional single-scalar inflationary universes in terms of a three-dimensional quantum field theory. The holographic description correctly reproduces standard inflationary predictions in their regime of applicability. In the opposite case, wherein gravity is strongly coupled at early times, we propose a holographic description in terms of perturbative QFT and present models capable of satisfying the current observational constraints while exhibiting a phenomenology distinct from standard inflation. This provides a qualitatively new method for generating a nearly scale-invariant spectrum of primordial cosmological perturbations.Comment: 20 pages, 5 figs; extended version of arXiv:0907.5542 including background material and detailed derivations. To appear in Proceedings of 1st Mediterranean Conference on Classical and Quantum Gravit

    Computational equivalence of the two inequivalent spinor representations of the braid group in the Ising topological quantum computer

    Full text link
    We demonstrate that the two inequivalent spinor representations of the braid group \B_{2n+2}, describing the exchanges of 2n+2 non-Abelian Ising anyons in the Pfaffian topological quantum computer, are equivalent from computational point of view, i.e., the sets of topologically protected quantum gates that could be implemented in both cases by braiding exactly coincide. We give the explicit matrices generating almost all braidings in the spinor representations of the 2n+2 Ising anyons, as well as important recurrence relations. Our detailed analysis allows us to understand better the physical difference between the two inequivalent representations and to propose a process that could determine the type of representation for any concrete physical realization of the Pfaffian quantum computer.Comment: 9 pages, 2 figures, published versio

    Like-charge attraction through hydrodynamic interaction

    Full text link
    We demonstrate that the attractive interaction measured between like-charged colloidal spheres near a wall can be accounted for by a nonequilibrium hydrodynamic effect. We present both analytical results and Brownian dynamics simulations which quantitatively capture the one-wall experiments of Larsen and Grier (Nature 385, p. 230, 1997).Comment: 10 pages, 4 figure
    corecore