219 research outputs found

    Global and target analysis of time-resolved spectra

    Get PDF
    AbstractIn biological/bioenergetics research the response of a complex system to an externally applied perturbation is often studied. Spectroscopic measurements at multiple wavelengths are used to monitor the kinetics. These time-resolved spectra are considered as an example of multiway data. In this paper, the methodology for global and target analysis of time-resolved spectra is reviewed. To fully extract the information from the overwhelming amount of data, a model-based analysis is mandatory. This analysis is based upon assumptions regarding the measurement process and upon a physicochemical model for the complex system. This model is composed of building blocks representing scientific knowledge and assumptions. Building blocks are the instrument response function (IRF), the components of the system connected in a kinetic scheme, and anisotropy properties of the components. The combination of a model for the kinetics and for the spectra of the components results in a more powerful spectrotemporal model. The model parameters, like rate constants and spectra, can be estimated from the data, thus providing a concise description of the complex system dynamics. This spectrotemporal modeling approach is illustrated with an elaborate case study of the ultrafast dynamics of the photoactive yellow protein

    Towards a Notion of Distributed Time for Petri Nets

    No full text
    We set the ground for research on a timed extension of Petri nets where time parameters are associated with tokens and arcs carry constraints that qualify the age of tokens required for enabling. The novelty is that, rather than a single global clock, we use a set of unrelated clocks --- possibly one per place --- allowing a local timing as well as distributed time synchronisation. We give a formal definition of the model and investigate properties of local versus global timing, including decidability issues and notions of processes of the respective models

    The role of aerodynamic forces in a mathematical model for suspension bridges

    Full text link
    In a fish-bone model for suspension bridges studied by us in a previous paper we introduce linear aerodynamic forces. We numerically analyze the role of these forces and we theoretically show that they do not influence the onset of torsional oscillations. This suggests a new explanation for the origin of instability in suspension bridges: it is a combined interaction between structural nonlinearity and aerodynamics and it follows a precise pattern. This gives an answer to a long-standing question about the origin of torsional instability in suspension bridges

    Strengthening Causal Inference in Exposomics Research: Application of Genetic Data and Methods

    Get PDF
    Advances in technologies to measure a broad set of exposures have led to a range of exposome research efforts. Yet, these efforts have insufficiently integrated methods that incorporate genetic data to strengthen causal inference, despite evidence that many exposome-associated phenotypes are heritable. OBJECTIVE: We demonstrate how integration of methods and study designs that incorporate genetic data can strengthen causal inference in exposomics research by helping address six challenges: reverse causation and unmeasured confounding, comprehensive examination of phenotypic effects, low efficiency, replication, multilevel data integration, and characterization of tissue-specific effects. Examples are drawn from studies of biomarkers and health behaviors, exposure domains where the causal inference methods we describe are most often applied. DISCUSSION: Technological, computational, and statistical advances in genotyping, imputation, and analysis, combined with broad data sharing and cross-study collaborations, offer multiple opportunities to strengthen causal inference in exposomics research. Full application of these opportunities will require an expanded understanding of genetic variants that predict exposome phenotypes as well as an appreciation that the utility of genetic variants for causal inference will vary by exposure and may depend on large sample sizes. However, several of these challenges can be addressed through international scientific collaborations that prioritize data sharing. Ultimately, we anticipate that efforts to better integrate methods that incorporate genetic data will extend the reach of exposomics research by helping address the challenges of comprehensively measuring the exposome and its health effects across studies, the life course, and in varied contexts and diverse populations

    Examination of the low-energy enhancement of the Ī³ -ray strength function of Fe 56

    Get PDF
    A model-independent technique was used to determine the Ī³-ray strength function (Ī³SF) of Fe56 down to Ī³-ray energies less than 1 MeV for the first time with GRETINA using the (p,pā€²) reaction at 16 MeV. No difference was observed in the energy dependence of the Ī³SF built on 2+ and 4+ final states, supporting the Brink hypothesis. In addition, angular distribution and polarization measurements were performed. The angular distributions are consistent with dipole radiation. The polarization results show a small bias towards magnetic character in the region of the enhancement
    • ā€¦
    corecore