19 research outputs found

    KontrastmittelgestĂŒtzte Magnetresonanzangiographie mit Eisenoxidpartikeln

    Full text link
    Das superparamagnetische T2-Kontrastmittel (KM) Resovist zeigt unter T1-gewichteten Sequenzen niedrig dosiert ein positives und hoch dosiert ein negatives Signalverhalten. In der mit Resovist durchgefĂŒhrten T1-gewichteten MRA konnte zwar ein intravasaler Signalanstieg, jedoch keine nutzbare VerlĂ€ngerung der Bluthalbwertszeit (BHWZ) erzielt werden. Daraufhin wurde experimentell getestet, bei welchem Partikel-Durchmesser (DM) von Resovist (65-21nm), bei welcher Konzentration und welchen Sequenzen sich der T1-Effekt der KM diagnostisch nutzen lassen könnte. Unter BerĂŒcksichtigung dieser Ergebnisse wurde in der Tierstudie der Einfluss von Partikel-DM und Dosis fĂŒr die T1-gewichtete MRA ermittelt. Abnehmender Partikel-DM und zunehmende KM-Dosis zeigten eine SignalverstĂ€rkung und eine verlĂ€ngerte BHWZ. Die kleinste Resovist-Fraktion (21nm) erzielte neben der stĂ€rksten Signalerhöhung auch die lĂ€ngste BHWZ, sodass aussagekrĂ€ftige MRA bis ĂŒber 25 Minuten nach KM-Gabe angefertigt werden konnten

    Biomechanical evaluation of combined short segment fixation and augmentation of incomplete osteoporotic burst fractures

    Full text link
    Background: Treating traumatic fractures in osteoporosis is challenging. Multiple clinical treatment options are found in literature. Augmentation techniques are promising to reduce treatment-related morbidity. In recent years, there have been an increasing number of reports about extended indication for augmentation techniques. However, biomechanical evaluations of these techniques are limited. Methods: Nine thoracolumbar osteoporotic spinal samples (4 FSU) were harvested from postmortem donors and immediately frozen. Biomechanical testing was performed by a robotic-based spine tester. Standardized incomplete burst fractures were created by a combination of osteotomy-like weakening and high velocity compression using a hydraulic material testing apparatus. Biomechanical measurements were performed on specimens in the following conditions: 1) intact, 2) fractured, 3) bisegmental instrumented, 4) bisegmental instrumented with vertebroplasty (hybrid augmentation, HA) and 5) stand-alone vertebroplasty (VP). The range of motion (RoM), neutral zone (NZ), elastic zone (EZ) and stiffness parameters were determined. Statistical evaluation was performed using Wilcoxon signed-rank test for paired samples (p = 0.05). Results: Significant increases in RoM and in the NZ and EZ (p < 0.005) were observed after fracture production. The RoM was decreased significantly by applying the dorsal bisegmental instrumentation to the fractured specimens (p < 0.005). VP reduced fractured RoM in flexion but was still increased significantly (p < 0.05) above intact kinematic values. NZ stiffness (p < 0.05) and EZ stiffness (p < 0.01) was increased by VP but remained lower than prefracture values. The combination of short segment instrumentation and vertebroplasty (HA) showed no significant changes in RoM and stiffness in NZ in comparison to the instrumented group, except for significant increase of EZ stiffness in flexion (p < 0.05). Conclusions: Stand-alone vertebroplasty (VP) showed some degree of support of the anterior column but was accompanied by persistent traumatic instability. Therefore, we would advocate against using VP as a stand-alone procedure in traumatic fractures. HA did not increase primary stability of short segment instrumentation. Some additional support of anterior column and changes of kinematic values of the EZ may lead one to suppose that additive augmentation may reduce the load of dorsal implants and possibly reduce the risk of implant failure.<br

    Experimentally induced incomplete burst fractures - a novel technique for calf and human specimens

    Full text link
    Background: Fracture morphology is crucial for the clinical decision-making process preceding spinal fracture treatment. The presented experimental approach was designed in order to ensure reproducibility of induced fracture morphology. Results: The presented method resulted in fracture morphology, found in clinical classification systems like the Magerl classification. In the calf spine samples, 70% displayed incomplete burst fractures corresponding to type A3.1 and A3.2 fractures. In all human samples, superior incomplete burst fractures (Magerl A3.1) were identified by an independent radiologist and spine surgeon. Conclusions: The presented set up enables the first experimental means to reliably model and study distinct incomplete burst fracture patterns in an in vitro setting. Thus, we envisage this protocol to facilitate further studies on spine fracture treatment of incomplete burst fractures

    Oligomerization of Paramagnetic Substrates Result in Signal Amplification and Can be Used for MR Imaging of Molecular Targets

    No full text
    Magnetic resonance imaging (MRI) has evolved into a sophisticated, noninvasive imaging modality capable of high-resolution anatomical and functional characterization of transgenic animals. To expand the capabilities MRI, we have developed a novel MR signal amplification (MRamp) strategy based on enzyme-mediated polymerization of paramagnetic substrates into oligomers of higher magnetic relaxivity. The substrates consist of chelated gadolinium covalently bound to phenols, which then serve as electron donors during enzymatic hydrogen peroxide reduction by peroxidase. The converted monomers undergo rapid condensation into paramagnetic oligomers leading to a threefold increase in atomic relaxivity ( R 1 /Gd). The observed relaxivity changes are largely due to an increase in the rotational correlation time τ r of the lanthanide. Three applications of the developed system are demonstrated: (1) imaging of nanomolar amounts of an oxidoreductase (peroxidase); (2) detection of a model ligand using an enzyme-linked immunoadsorbent assay format; and (3) imaging of E-selectin on the surface of endothelial cells probed for with an anti-E-selectin – peroxidase conjugate. The development of “enzyme sensing” probes is expected to have utility for a number of applications including in vivo detection of specific molecular targets. One particular advantage of the MRamp technique is that the same paramagnetic substrate can be potentially used to identify different molecular targets by attaching enzymes to various antibodies or other target-seeking molecules

    Cellular Activation of the Self-Quenched Fluorescent Reporter Probe in Tumor Microenvironment

    Get PDF
    The effect of intralysosomal proteolysis of near-infrared fluorescent (NIRF) self-quenched macromolecular probe (PGC-Cy5.5) has been previously reported and used for tumor imaging. Here we demonstrate that proteolysis can be detected noninvasively in vivo at the cellular level. A codetection of GFP fluorescence (using two-photon excitation) and NIRF was performed in tumor-bearing animals injected with PGC-Cy5.5. In vivo microscopy of tumor cells in subdermal tissue layers (up to 160 ”m) showed a strong Cy5.5 dequenching effect in GFP-negative cells. This observation was corroborated by flow cytometry, sorting, and reverse transcription polymerase chain reaction analysis of tumor-isolated cells. Both GFP-positive (81% total) and GFP-negative (19% total) populations contained Cy5.5-positive cells. The GFP-negative cells were confirmed to be host mouse cells by the absence of rat cathepsin mRNA signal. The subfraction of GFP-negative cells (2.5–3.0%) had seven times higher NIRF intensity than the majority of GFP-positive or GFP-negative cells (372 and 55 AU, respectively). Highly NIRF-positive, FP-negative cells were CD45- and MAC3-positive. Our results indicate that: 1) intracellular proteolysis can be imaged in vivo at the cellular level using cathepsin-sensitive probes; 2) tumor-recruited cells of hematopoetic origin participate most actively in uptake and degradation of long-circulating macromolecular probes

    A facile one-stage treatment of critical bone defects using a calcium sulfate/hydroxyapatite biomaterial providing spatiotemporal delivery of bone morphogenic protein-2 and zoledronic acid

    No full text
    Bone morphogenic proteins (BMPs) are the only true osteoinductive molecules. Despite being tremendously potent, their clinical use has been limited for reasons including supraphysiological doses, suboptimal delivery systems, and the pro-osteoclast effect of BMPs. Efforts to achieve spatially controlled bone formation using BMPs are being made. We demonstrate that a carrier consisting of a powder of calcium sulfate/hydroxyapatite (CaS/HA) mixed with bone active molecules provides an efficient drug delivery platform for critical femoral defect healing in rats. The bone-active molecules were composed of osteoinductive rhBMP-2 and the bisphosphonate, and zoledronic acid (ZA) was chosen to overcome BMP-2-induced bone resorption. It was demonstrated that delivery of rhBMP-2 was necessary for critical defect healing and restoration of mechanical properties, but codelivery of BMP-2 and ZA led to denser and stronger fracture calluses. Together, the CaS/HA biomaterial with rhBMP-2 and/or ZA can potentially be used as an off-the-shelf alternative to autograft bone

    Experimentally induced incomplete burst fractures - a novel technique for calf and human specimens

    Get PDF
    Abstract Background Fracture morphology is crucial for the clinical decision-making process preceding spinal fracture treatment. The presented experimental approach was designed in order to ensure reproducibility of induced fracture morphology. Results The presented method resulted in fracture morphology, found in clinical classification systems like the Magerl classification. In the calf spine samples, 70% displayed incomplete burst fractures corresponding to type A3.1 and A3.2 fractures. In all human samples, superior incomplete burst fractures (Magerl A3.1) were identified by an independent radiologist and spine surgeon. Conclusions The presented set up enables the first experimental means to reliably model and study distinct incomplete burst fracture patterns in an in vitro setting. Thus, we envisage this protocol to facilitate further studies on spine fracture treatment of incomplete burst fractures.</p
    corecore