3 research outputs found

    The STING-IFN-β-Dependent Axis Is Markedly Low in Patients with Relapsing-Remitting Multiple Sclerosis

    No full text
    Cyclic GMP-AMP-synthase is a sensor of endogenous nucleic acids, which subsequently elicits a stimulator of interferon genes (STING)-dependent type I interferon (IFN) response defending us against viruses and other intracellular pathogens. This pathway can drive pathological inflammation, as documented for type I interferonopathies. In contrast, specific STING activation and subsequent IFN-β release have shown beneficial effects on experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Although less severe cases of relapse-remitting MS (RRMS) are treated with IFN-β, there is little information correlating aberrant type I IFN signaling and the pathologic conditions of MS. We hypothesized that there is a link between STING activation and the endogenous production of IFN-β during neuroinflammation. Gene expression analysis in EAE mice showed that Sting level decreased in the peripheral lymphoid tissue, while its level increased within the central nervous system over the course of the disease. Similar patterns could be verified in peripheral immune cells during the acute phases of RRMS in comparison to remitting phases and appropriately matched healthy controls. Our study is the first to provide evidence that the STING/IFN-β-axis is downregulated in RRMS patients, meriting further intensified research to understand its role in the pathophysiology of MS and potential translational applications

    Myositis in Germany: epidemiological insights over 15 years from 2005 to 2019

    No full text
    Abstract Background The medical care of patients with myositis is a great challenge in clinical practice. This is due to the rarity of these disease, the complexity of diagnosis and management as well as the lack of systematic analyses. Objectives Therefore, the aim of this project was to obtain an overview of the current care of myositis patients in Germany and to evaluate epidemiological trends in recent years. Methods In collaboration with BARMER Insurance, retrospective analysis of outpatient and inpatient data from an average of approximately 8.7 million insured patients between January 2005 and December 2019 was performed using ICD-10 codes for myositis for identification of relevant data. In addition, a comparative analysis was performed between myositis patients and an age-matched comparison group from other populations insured by BARMER. Results 45,800 BARMER-insured individuals received a diagnosis of myositis during the observation period, with a relatively stable prevalence throughout. With regard to comorbidities, a significantly higher rate of cardiovascular disease as well as neoplasm was observed compared to the control group within the BARMER-insured population. In addition, myositis patients suffer more frequently from psychiatric disorders, such as depression and somatoform disorders. However, the ICD-10 catalogue only includes the specific coding of “dermatomyositis” and “polymyositis” and thus does not allow for a sufficient analysis of all idiopathic inflammatory myopathies subtypes. Conclusion The current data provide a comprehensive epidemiological analysis of myositis in Germany, highlighting the multimorbidity of myositis patients. This underlines the need for multidisciplinary management. However, the ICD-10 codes currently still in use do not allow for specific analysis of the subtypes of myositis. The upcoming ICD-11 coding may improve future analyses in this regard

    Platelet Inhibition by Low-Dose Acetylsalicylic Acid Reduces Neuroinflammation in an Animal Model of Multiple Sclerosis

    No full text
    Aside from the established immune-mediated etiology of multiple sclerosis (MS), compelling evidence implicates platelets as important players in disease pathogenesis. Specifically, numerous studies have highlighted that activated platelets promote the central nervous system (CNS)-directed adaptive immune response early in the disease course. Platelets, therefore, present a novel opportunity for modulating the neuroinflammatory process that characterizes MS. We hypothesized that the well-known antiplatelet agent acetylsalicylic acid (ASA) could inhibit neuroinflammation by affecting platelets if applied at low-dose and investigated its effect during experimental autoimmune encephalomyelitis (EAE) as a model to study MS. We found that oral administration of low-dose ASA alleviates symptoms of EAE accompanied by reduced inflammatory infiltrates and less extensive demyelination. Remarkably, the percentage of CNS-infiltrated CD4+ T cells, the major drivers of neuroinflammation, was decreased to 40.98 ± 3.28% in ASA-treated mice compared to 56.11 ± 1.46% in control animals at the disease maximum as revealed by flow cytometry. More interestingly, plasma levels of thromboxane A2 were decreased, while concentrations of platelet factor 4 and glycoprotein VI were not affected by low-dose ASA treatment. Overall, we demonstrate that low-dose ASA could ameliorate the platelet-dependent neuroinflammatory response in vivo, thus indicating a potential treatment approach for MS
    corecore