15 research outputs found

    Population Pharmacokinetic Modelling of FE 999049, a Recombinant Human Follicle-Stimulating Hormone, in Healthy Women After Single Ascending Doses

    Get PDF
    OBJECTIVE: The purpose of this analysis was to develop a population pharmacokinetic model for a novel recombinant human follicle-stimulating hormone (FSH) (FE 999049) expressed from a human cell line of foetal retinal origin (PER.C6(®)) developed for controlled ovarian stimulation prior to assisted reproductive technologies.METHODS: Serum FSH levels were measured following a single subcutaneous FE 999049 injection of 37.5, 75, 150, 225 or 450 IU in 27 pituitary-suppressed healthy female subjects participating in this first-in-human single ascending dose trial. Data was analysed by nonlinear mixed effects population pharmacokinetic modelling in NONMEM 7.2.0.RESULTS: A one-compartment model with first-order absorption and elimination rates was found to best describe the data. A transit model was introduced to describe a delay in the absorption process. The apparent clearance (CL/F) and apparent volume of distribution (V/F) estimates were found to increase with body weight. Body weight was included as an allometrically scaled covariate with a power exponent of 0.75 for CL/F and 1 for V/F.CONCLUSIONS: The single-dose pharmacokinetics of FE 999049 were adequately described by a population pharmacokinetic model. The average drug concentration at steady state is expected to be reduced with increasing body weight

    Functional effects of neuropeptide Y receptors on blood flow and nitric oxide levels in the human nose

    No full text
    The aim of this study was to examine dose-dependent effects of intranasal application of neuropeptide Y (NPY) on nasal mucosal blood flow, blood content, and intranasal nitric oxide (NO) concentration. Blood flow was measured by laser Doppler flowmetry (LDF) and blood content by rhinomanometry. Mucosal biopsies were taken for investigation of Y1 and Y2 receptor mRNA expression, using the reverse transcriptase-polymerase chain reaction (RT-PCR). Intranasal application of NPY evoked a dose-dependent reduction of nasal mucosal blood flow. Maximal vasoconstriction, seen at 12 nmol, was -37.5 +/- 6.2%, p 17 min. NPY evoked a dose-dependent reduction of nasal airway resistance (NAR) on the ipsilateral side. Maximal decrease was -24.0 +/- 10.0% at 12 nmol, p < 0.05 (n = 9). There was a decrease in nasal NO production on the ipsilateral side after application of NPY 12 nmol (-7.4 +/- 1.2%, p < 0.05, n = 8). RT-PCR products corresponding to Y1 receptor but not Y2 receptor mRNA were obtained from biopsies of the nasal mucosa. In conclusion, NPY is a potent vasoconstrictor in the human nose reducing mucosal blood flow, as well as the blood content. The effect is probably mediated via Y1 receptors. NPY receptor agonists may prove beneficial in the treatment of the congested nose in allergic or vasomotor rhinitis

    Characterization of Y(3) receptor-mediated synaptic inhibition by chimeric neuropeptide Y-peptide YY peptides in the rat brainstem

    No full text
    1. Neuropeptide Y (NPY) and peptide YY (PYY) act at receptors referred to as Y(1) and Y(2), while the Y(3) receptor is specific to NPY and does not recognize PYY. The effects of NPY, its related peptides and a series of newly constructed chimeric NPY-PYY peptides were examined on excitatory and inhibitory postsynaptic currents (e.p.s.cs and i.p.s.cs, respectively) in rat dorsomedial nucleus tractus solitarius (NTS) neurones recorded in coronal brainstem slices. Monosynaptic activity was evoked by electrical stimulation in the region of the tractus solitarius. 2. NPY (5–500 nM) inhibited e.p.s.cs and i.p.s.cs in a concentration-dependent manner. In contrast, PYY (500 nM) failed to affect either e.p.s.cs or i.p.s.cs. The N- and C-terminal parts of a series of chimeric NPY-PYY peptides were joined at positions where NPY and PYY sequences differ. In binding experiments the chimeric peptides were all about equipotent with NPY and PYY in displacing [(125)I]-PYY from Y(1) and Y(2) binding sites on SK-N-MC cells and rat hippocampus respectively. 3. In the whole cell voltage clamp recordings of NTS neurones, NPY(1–23)-PYY(24–36) and NPY(1–14)-PYY(15–36) evoked a concentration-dependent inhibition of e.p.s.cs and i.p.s.cs, while NPY(1–7)-PYY(8–36) and NPY(1–3)-PYY(4–36) were inactive. The only differences in amino acid residues between NPY(1–14)-PYY(15–36) and NPY(1–7)-PYY(8–36) reside in positions 13 and 14. 4. Furthermore, [Pro(34)]NPY (500 nM) was equivalent in potency to NPY itself at inhibiting monosynaptic transmission in NTS, while [Leu(31),Pro(34)]NPY and pancreatic polypeptide (both at 500 nM) failed to affect synaptic transmission. 5. The present study has shown that NPY acts at Y(3) receptors to suppress both excitatory and inhibitory currents in the NTS. The different efficacy of the chimeric NPY-PYY peptides suggests that positions 13 and 14 are of great importance for Y(3) receptor recognition. Finally, this receptor type readily recognizes [Pro(34)]NPY, but not [Leu(31),Pro(34)]NPY

    N,N'-Bis(2-mercaptoethyl)isophthalamide Binds Electrophilic Paracetamol Metabolites and Prevents Paracetamol-Induced Liver Toxicity

    No full text
    Paracetamol overdosing may cause liver injury including fulminant liver failure due to generation of the toxic metabolites, N-acetyl-p-benzoquinone imine (NAPQI) and p-benzoquinone (p-BQ). Herein, the chelating agent, N,N'-Bis(2-mercaptoethyl)isophthalamide (NBMI), was examined for its potential ability to entrap NAPQI and p-BQ and to prevent paracetamol-induced liver injury. Both NBMI and the conventional paracetamol antidote N-acetylcysteine (NAC) were investigated with regard to their abilities to scavenge the NAPQI and p-BQ in a Transient Receptor Potential Ankyrin 1-dependent screening assay. Stoichiometric evaluations indicated that NBMI was able to entrap these metabolites more efficiently than NAC. Furthermore, oral administration of either NBMI (680 mg/kg) or NAC (680 mg/kg) prevented the development of the characteristic liver necrosis and elevation of serum alanine aminotransferase in a mouse model for paracetamol-induced liver injury. In summary, these results show that NBMI is able to entrap the toxic metabolites NAPQI and p-BQ and to prevent paracetamol-induced liver injury in mice

    Selepressin, a novel selective vasopressin V1A agonist, is an effective substitute for norepinephrine in a phase IIa randomized, placebo-controlled trial in septic shock patients

    No full text
    Background: Vasopressin is widely used for vasopressor support in septic shock patients, but experimental evidence suggests that selective V1A agonists are superior. The initial pharmacodynamic effects, pharmacokinetics, and safety of selepressin, a novel V1A-selective vasopressin analogue, was examined in a phase IIa trial in septic shock patients. Methods: This was a randomized, double-blind, placebo-controlled multicenter trial in 53 patients in early septic shock (aged ≥18 years, fluid resuscitation, requiring vasopressor support) who received selepressin 1.25 ng/kg/minute (n = 10), 2.5 ng/kg/minute (n = 19), 3.75 ng/kg/minute (n = 2), or placebo (n = 21) until shock resolution or a maximum of 7 days. If mean arterial pressure (MAP) ≥65 mmHg was not maintained, open-label norepinephrine was added. Co-primary endpoints were maintenance of MAP >60 mmHg without norepinephrine, norepinephrine dose, and proportion of patients maintaining MAP >60 mmHg with or without norepinephrine over 7 days. Secondary endpoints included cumulative fluid balance, organ dysfunction, pharmacokinetics, and safety. Results: A higher proportion of the patients receiving 2.5 ng/kg/minute selepressin maintained MAP >60 mmHg without norepinephrine (about 50% and 70% at 12 and 24 h, respectively) vs. 1.25 ng/kg/minute selepressin and placebo (p < 0.01). The 7-day cumulative doses of norepinephrine were 761, 659, and 249 μg/kg (placebo 1.25 ng/kg/minute and 2.5 ng/kg/minute, respectively; 2.5 ng/kg/minute vs. placebo; p < 0.01). Norepinephrine infusion was weaned more rapidly in selepressin 2.5 ng/kg/minute vs. placebo (0.04 vs. 0.18 μg/kg/minute at 24 h, p < 0.001), successfully maintaining target MAP and reducing norepinephrine dose vs. placebo (first 24 h, p < 0.001). Cumulative net fluid balance was lower from day 5 onward in the selepressin 2.5 ng/kg/minute group vs. placebo (p < 0.05). The selepressin 2.5 ng/kg/minute group had a greater proportion of days alive and free of ventilation vs. placebo (p < 0.02). Selepressin (2.5 ng/kg/minute) was well tolerated, with a similar frequency of treatment-emergent adverse events for selepressin 2.5 ng/kg/minute and placebo. Two patients were infused at 3.75 ng/kg/minute, one of whom had the study drug infusion discontinued for possible safety reasons, with subsequent discontinuation of this dose group. Conclusions: In septic shock patients, selepressin 2.5 ng/kg/minute was able to rapidly replace norepinephrine while maintaining adequate MAP, and it may improve fluid balance and shorten the time of mechanical ventilation. Trial registration ClinicalTrials.gov, NCT01000649 . Registered on September 30, 2009.Medicine, Faculty ofOther UBCNon UBCCritical Care Medicine, Division ofMedicine, Department ofReviewedFacult

    Characterisation of Population Pharmacokinetics and Endogenous Follicle Stimulating Hormone (FSH) Levels after Multiple Dosing of a Recombinant Human FSH, FE 999049, in Healthy Women

    Get PDF
    OBJECTIVE: The aim of this study was to characterise the population pharmacokinetics of FE 999049, a novel recombinant human follicle-stimulating hormone (FSH), after multiple dosing in healthy women, taking into account endogenous FSH levels and the reproductive hormone dynamics.METHODS: Longitudinal measurements of FSH, luteinising hormone, progesterone, estradiol, and inhibin B levels were collected after repeated subcutaneous dosing with 225 IU of FE 999049 in 24 gonadotropin downregulated healthy women. The FSH data were described using nonlinear mixed-effects modelling.RESULTS: The measured FSH levels were modelled as a sum of endogenous FSH and FE 999049. The FE 999049 population pharmacokinetics were best described using a one-compartment model with first-order absorption and elimination, and a transit model for delayed absorption. The apparent clearance and volume of distribution increased with body weight in accordance with an allometrically scaled power exponent of 0.75 and 1, respectively. Endogenous FSH levels were lower in individuals with higher progesterone levels at baseline and were further suppressed over time with increasing inhibin B levels.CONCLUSIONS: This characterisation of FE 999049 population pharmacokinetics after repeated dosing is in line with previous findings after single-dose administration. The results provide a basis for study design and data evaluation in the future development of recombinant FSH products, and show it can be of importance to account for endogenous FSH levels and its variation over time for accurate estimation of exogenously administered FSH pharmacokinetic parameters. Thus, correcting FSH concentrations by the observed endogenous FSH baseline value at all time points may be incorrect
    corecore