43 research outputs found

    Two alternative recessive quantitative trait loci influence resistance to spring black stem and leaf spot in Medicago truncatula

    Get PDF
    Background Knowledge of the genetic basis of plant resistance to necrotrophic pathogens is incomplete and has been characterised in relatively few pathosystems. In this study, the cytology and genetics of resistance to spring black stem and leaf spot caused by Phoma medicaginis, an economically important necrotrophic pathogen of Medicago spp., was examined in the model legume M. truncatula. Results Macroscopically, the resistant response of accession SA27063 was characterised by small, hypersensitive-like spots following inoculation while the susceptible interaction with accessions A17 and SA3054 showed necrotic lesions and spreading chlorosis. No unique cytological differences were observed during early infection (<48 h) between the resistant and susceptible genotypes, except pathogen growth was restricted to one or a few host cells in SA27063. In both interactions reactive oxygen intermediates and phenolic compounds were produced, and cell death occurred. Two F2 populations segregating for resistance to spring black stem and leaf spot were established between SA27063 and the two susceptible accessions, A17 and SA3054. The cross between SA27063 and A17 represented a wider cross than between SA27063 and SA3054, as evidenced by higher genetic polymorphism, reduced fertility and aberrant phenotypes of F2 progeny. In the SA27063 × A17 F2 population a highly significant quantitative trait locus (QTL, LOD = 7.37; P < 0.00001) named resistance to the necrotroph P homa m edicaginis one (rnpm1) genetically mapped to the top arm of linkage group 4 (LG4). rnpm1 explained 33.6% of the phenotypic variance in the population's response to infection depicted on a 1–5 scale and was tightly linked to marker AW256637. A second highly significant QTL (LOD = 6.77; P < 0.00001), rnpm2, was located on the lower arm of LG8 in the SA27063 × SA3054 map. rnpm2 explained 29.6% of the phenotypic variance and was fine mapped to a 0.8 cM interval between markers h2_16a6a and h2_21h11d. rnpm1 is tightly linked to a cluster of Toll/Interleukin1 receptor-nucleotide binding site-leucine-rich repeat (TIR-NBS-LRR) genes and disease resistance protein-like genes, while no resistance gene analogues (RGAs) are apparent in the genomic sequence of the reference accession A17 at the rnpm2 locus. Conclusion The induction of defence responses and cell death in the susceptible interaction following infection by P. medicaginis suggested this pathogen is not negatively affected by these responses and may promote them. A QTL for resistance was revealed in each of two populations derived from crosses between a resistant accession and two different susceptible accessions. Both loci are recessive in nature, and the simplest explanation for the existence of two separate QTLs is the occurrence of host genotype-specific susceptibility loci that may interact with undetermined P. medicaginis virulence factors

    Identification of distinct quantitative trait loci associated with defence against the closely related aphids Acyrthosiphon pisum and A. kondoi in Medicago truncatula

    Get PDF
    Aphids are a major family of plant insect pests. Medicago truncatula and Acyrthosiphon pisum (pea aphid, PA) are model species with a suite of resources available to help dissect the mechanism underlying plant–aphid interactions. A previous study focused on monogenic and relatively strong resistance in M. truncatula to PA and other aphid species. In this study a moderate resistance to PA was characterized in detail in the M. truncatula line A17 and compared with the highly susceptible line A20 and the more resistant line Jester. The results show that PA resistance in A17 involves both antibiosis and tolerance, and that resistance is phloem based. Quantitative trait locus (QTL) analysis using a recombinant inbred line (RIL) population (n=114) from a cross between A17 and A20 revealed that one locus, which co-segregated with AIN (Acyrthosiphon-induced necrosis) on chromosome 3, is responsible for the reduction of aphid biomass (indicator of antibiosis) for both PA and bluegreen aphid (BGA, A. kondoi), albeit to a lesser degree for PA than BGA. Interestingly, two independent loci on chromosomes 5 and 3 were identified for the plant biomass reduction (indicator of plant tolerance) by PA and BGA, respectively, demonstrating that the plant’s tolerance response to these two closely related aphid species is distinct. Together with previously identified major resistant (R) genes, the QTLs identified in this study are powerful tools to understand fully the spectrum of plant defence against sap-sucking insects and provide opportunities for breeders to generate effective and sustainable strategies for aphid control

    INDEL variation in the regulatory region of the major flowering time gene LanFTc1 is associated with vernalization response and flowering time in narrow-leafed lupin (Lupinus angustifolius L.)

    Get PDF
    © 2018 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd. Narrow-leafed lupin (Lupinus angustifolius L.) cultivation was transformed by 2 dominant vernalization-insensitive, early flowering time loci known as Ku and Julius (Jul), which allowed expansion into shorter season environments. However, reliance on these loci has limited genetic and phenotypic diversity for environmental adaptation in cultivated lupin. We recently predicted that a 1,423-bp deletion in the cis-regulatory region of LanFTc1, a FLOWERING LOCUS T (FT) homologue, derepressed expression of LanFTc1 and was the underlying cause of the Ku phenotype. Here, we surveyed diverse germplasm for LanFTc1 cis-regulatory variation and identified 2 further deletions of 1,208 and 5,162 bp in the 5' regulatory region, which overlap the 1,423-bp deletion. Additionally, we confirmed that no other polymorphisms were perfectly associated with vernalization responsiveness. Phenotyping and gene expression analyses revealed that Jul accessions possessed the 5,162-bp deletion and that the Jul and Ku deletions were equally capable of removing vernalization requirement and up-regulating gene expression. The 1,208-bp deletion was associated with intermediate phenology, vernalization responsiveness, and gene expression and therefore may be useful for expanding agronomic adaptation of lupin. This insertion/deletion series may also help resolve how the vernalization response is mediated at the molecular level in legumes

    Analysis of conglutin seed storage proteins across lupin species using transcriptomic, protein and comparative genomic approaches

    Get PDF
    Background - The major proteins in lupin seeds are conglutins that have primary roles in supplying carbon, sulphur and nitrogen and energy for the germinating seedling. They fall into four families; α, β, γ and δ. Interest in these conglutins is growing as family members have been shown to have beneficial nutritional and pharmaceutical properties. Results - An in-depth transcriptome and draft genome from the narrow-leafed lupin (NLL; Lupinus angustifolius) variety, Tanjil, were examined and 16 conglutin genes were identified. Using RNAseq data sets, the structure and expression of these 16 conglutin genes were analysed across eight lupin varieties from five lupin species. Phylogenic analysis suggest that the α and γ conglutins diverged prior to lupin speciation while β and δ members diverged both prior and after speciation. A comparison of the expression of the 16 conglutin genes was performed, and in general the conglutin genes showed similar levels of RNA expression among varieties within species, but quite distinct expression patterns between lupin species. Antibodies were generated against the specific conglutin families and immunoblot analyses were used to compare the levels of conglutin proteins in various tissues and during different stages of seed development in NLL, Tanjil, confirming the expression in the seed. This analysis showed that the conglutins were expressed highly at the mature seed stage, in all lupin species, and a range of polypeptide sizes were observed for each conglutin family. Conclusions - This study has provided substantial information on the complexity of the four conglutin families in a range of lupin species in terms of their gene structure, phylogenetic relationships as well as their relative RNA and protein abundance during seed development. The results demonstrate that the majority of the heterogeneity of conglutin polypeptides is likely to arise from post-translational modification from a limited number of precursor polypeptides rather than a large number of different genes. Overall, the results demonstrate a high degree of plasticity for conglutin expression during seed development in different lupin species

    Development of genomic resources for the narrow-leafed lupin (Lupinus angustifolius): construction of a bacterial artificial chromosome (BAC) library and BAC-end sequencing

    Get PDF
    Extent: 15p.BACKGROUND: Lupinus angustifolius L, also known as narrow-leafed lupin (NLL), is becoming an important grain legume crop that is valuable for sustainable farming and is becoming recognised as a potential human health food. Recent interest is being directed at NLL to improve grain production, disease and pest management and health benefits of the grain. However, studies have been hindered by a lack of extensive genomic resources for the species. RESULTS: A NLL BAC library was constructed consisting of 111,360 clones with an average insert size of 99.7 Kbp from cv Tanjil. The library has approximately 12 × genome coverage. Both ends of 9600 randomly selected BAC clones were sequenced to generate 13985 BAC end-sequences (BESs), covering approximately 1% of the NLL genome. These BESs permitted a preliminary characterisation of the NLL genome such as organisation and composition, with the BESs having approximately 39% G:C content, 16.6% repetitive DNA and 5.4% putative gene-encoding regions. From the BESs 9966 simple sequence repeat (SSR) motifs were identified and some of these are shown to be potential markers. CONCLUSIONS: The NLL BAC library and BAC-end sequences are powerful resources for genetic and genomic research on lupin. These resources will provide a robust platform for future high-resolution mapping, map-based cloning, comparative genomics and assembly of whole-genome sequencing data for the species.Ling-Ling Gao, James K. Hane, Lars G. Kamphuis, Rhonda Foley, Bu-Jun Shi, Craig A. Atkins and Karam B. Sing

    Characterization of the genetic factors affecting quinolizidine alkaloid biosynthesis and its response to abiotic stress in narrow-leafed lupin (Lupinus angustifolius L.)

    No full text
    © 2018 John Wiley & Sons Ltd. Quinolizidine alkaloids (QAs) are toxic secondary metabolites that complicate the end use of narrow-leafed lupin (NLL; Lupinus angustifolius L.) grain, as levels sometimes exceed the industry limit for its use as a food and feed source. The genotypic and environmental influences on QA production in NLL are poorly understood. Here, the expression of QA biosynthetic genes was analysed in vegetative and reproductive tissues of bitter (high QA) and sweet (low QA) accessions. It was demonstrated that sweet accessions are characterized by lower QA biosynthetic gene expression exclusively in leaf and stem tissues than bitter NLL, consistent with the hypothesis that QAs are predominantly produced in aerial tissues and transported to seeds, rather than synthesized within the seed itself. This analysis informed our identification of additional candidate genes involved in QA biosynthesis. Drought and temperature stress are two major abiotic stresses that often occur during NLL pod set. Hence, we assessed the effect of drought, increased temperature, and their combination, on QA production in three sweet NLL cultivars. A cultivar-specific response to drought and temperature in grain QA levels was observed, including the identification of a cultivar where alkaloid levels did not change with these stress treatments

    Two alternative recessive quantitative trait loci influence resistance to spring black stem and leaf spot in -1

    No full text
    Ost infection. () entering a stomata of SA3054. (, ) build-up of HOaround the sites of penetration in SA27063. (, ) Autofluorescence of phenolic compounds around the infection site in both SA27063 () and SA3054 (). HO= hydrogen peroxide; ifh = infection hyphae; p = point of penetration; sp = spore; st = stomata.<p><b>Copyright information:</b></p><p>Taken from "Two alternative recessive quantitative trait loci influence resistance to spring black stem and leaf spot in "</p><p>http://www.biomedcentral.com/1471-2229/8/30</p><p>BMC Plant Biology 2008;8():30-30.</p><p>Published online 26 Mar 2008</p><p>PMCID:PMC2324085.</p><p></p

    Two alternative recessive quantitative trait loci influence resistance to spring black stem and leaf spot in -4

    No full text
    Mes are located to the right. Genetic distances (cM) are located to the left of each marker. The genomic locations of QTLs and for resistance are depicted the right of LG8 and LG1 respectively, with standard deviations depicted by lines either side.<p><b>Copyright information:</b></p><p>Taken from "Two alternative recessive quantitative trait loci influence resistance to spring black stem and leaf spot in "</p><p>http://www.biomedcentral.com/1471-2229/8/30</p><p>BMC Plant Biology 2008;8():30-30.</p><p>Published online 26 Mar 2008</p><p>PMCID:PMC2324085.</p><p></p

    Two alternative recessive quantitative trait loci influence resistance to spring black stem and leaf spot in -2

    No full text
    (Variance within a Ffamily () as a quadratic function of its mean response (); (P) probability testing the null-hypothesis the quadratic term (0.043) is significantly different from zero.<p><b>Copyright information:</b></p><p>Taken from "Two alternative recessive quantitative trait loci influence resistance to spring black stem and leaf spot in "</p><p>http://www.biomedcentral.com/1471-2229/8/30</p><p>BMC Plant Biology 2008;8():30-30.</p><p>Published online 26 Mar 2008</p><p>PMCID:PMC2324085.</p><p></p
    corecore