285 research outputs found

    Rapid Bayesian position reconstruction for gravitational-wave transients

    Get PDF
    Within the next few years, Advanced LIGO and Virgo should detect gravitational waves from binary neutron star and neutron star-black hole mergers. These sources are also predicted to power a broad array of electromagnetic transients. Because the electromagnetic signatures can be faint and fade rapidly, observing them hinges on rapidly inferring the sky location from the gravitational-wave observations. Markov chain Monte Carlo methods for gravitational-wave parameter estimation can take hours or more. We introduce BAYESTAR, a rapid, Bayesian, non-Markov chain Monte Carlo sky localization algorithm that takes just seconds to produce probability sky maps that are comparable in accuracy to the full analysis. Prompt localizations from BAYESTAR will make it possible to search electromagnetic counterparts of compact binary mergers.Comment: 23 pages, 12 figures, published in Phys. Rev.

    Tiling strategies for optical follow-up of gravitational wave triggers by wide field of view telescopes

    Get PDF
    Binary neutron stars are among the most promising candidates for joint gravitational-wave and electromagnetic astronomy. The goal of this work is to investigate the strategy of using gravitational wave sky-localizations for binary neutron star systems, to search for electromagnetic counterparts using wide field of view optical telescopes. We examine various strategies of scanning the gravitational wave sky-localizations on the mock 2015-16 gravitational-wave events. We propose an optimal tiling-strategy that would ensure the most economical coverage of the gravitational wave sky-localization, while keeping in mind the realistic constrains of transient optical astronomy. Our analysis reveals that the proposed tiling strategy improves the sky-localization coverage over naive contour-covering method. The improvement is more significant for observations conducted using larger field of view telescopes, or for observations conducted over smaller confidence interval of gravitational wave sky-localization probability distribution. Next, we investigate the performance of the tiling strategy for telescope arrays and compare their performance against monolithic giant field of view telescopes. We observed that distributing the field of view of the telescopes into arrays of multiple telescopes significantly improves the coverage efficiency by as much as 50% over a single large FOV telescope in 2016 localizations while scanning around 100 sq. degrees. Finally, we studied the ability of optical counterpart detection by various types of telescopes. In Our analysis for a range of wide field-of-view telescopes we found improvement in detection upon sacrificing coverage of localization in order to achieve greater observation depth for very large field-of-view - small aperture telescopes, especially if the intrinsic brightness of the optical counterparts are weak.Comment: Accepted for publication in A&A. 10 pages, 10 figure

    Assessing Online Viewing Practices Among College Students

    Get PDF
    This article focuses on media literacy education for college students. First, we conducted psychometric analyses to verify the properties of the Critical Evaluation and Analysis of Media (CEAM) scale. CEAM measures college students’ self-reported practices for critically evaluating and analyzing the credibility, audience, and technical design elements of online media, such as news, advertisement, and entertainment media. Using CEAM, our second goal was to identify trends in critical viewing practices among first-year students enrolled in college. Results of confirmatory factor analysis (CFA) and item response theory (IRT) supported a three-factor structure for the CEAM scale. Composite score reliability for all items comprising the total scale displayed strong evidence for the internal consistency of the scale with a Coefficient Alpha (α) of .91. Score reliability estimates for each subscale follow: (a) Questioning Credibility (α = .80), (b) Recognizing Audience (α = .78), and (c) Recognizing Design (α = .81). Findings from the study indicate that while first-year college students generally perceive they have adequate practices in recognizing audience in media messages and questioning the credibility of news, there is room for improvement in questioning the credibility of advertisements, suggesting that college instructors should focus more on advertising literacy

    Rapid Bayesian position reconstruction for gravitational-wave transients

    Get PDF

    On the Existence of Radiation Gauges in Petrov type II spacetimes

    Get PDF
    The radiation gauges used by Chrzanowski (his IRG/ORG) for metric reconstruction in the Kerr spacetime seem to be over-specified. Their specification consists of five conditions: four, which we treat here as valid gauge conditions, plus an additional condition on the trace of the metric perturbation. In this work, we utilize a newly developed form of the perturbed Einstein equations to establish a condition -- on a particular tetrad component of the stress-energy tensor -- under which the full IRG/ORG can be imposed. Using gauge freedom, we are able to impose the full IRG for Petrov type II and type D backgrounds, using a different tetrad for each case. As a specific example, we work through the process of imposing the IRG in a Schwarzschild background, using a more traditional approach. Implications for metric reconstruction using the Teukolsky curvature perturbations in type D spacetimes are briefly discussed.Comment: 21 pages, uses iop style files. v2: proved a stronger result for type II backgrounds, added a subsection on remaining gauge freedom in the full IRG and improved calrity and readability throughout due to insightful referee comments; published as Class. Quantum Grav. 24 (2007) 2367-238

    Towards the Laboratory Search for Space-Time Dissipation

    Get PDF
    It has been speculated that gravity could be an emergent phenomenon, with classical general relativity as an effective, macroscopic theory, valid only for classical systems at large temporal and spatial scales. As in classical continuum dynamics, the existence of underlying microscopic degrees of freedom may lead to macroscopic dissipative behaviors. With the hope that such dissipative behaviors of gravity could be revealed by carefully designed experiments in the laboratory, we consider a phenomenological model that adds dissipations to the gravitational field, much similar to frictions in solids and fluids. Constraints to such dissipative behavior can already be imposed by astrophysical observations and existing experiments, but mostly in lower frequencies. We propose a series of experiments working in higher frequency regimes, which may potentially put more stringent bounds on these models.Comment: 18 pages, 8 figure

    Gravitational Radiation from Preheating with Many Fields

    Full text link
    Parametric resonances provide a mechanism by which particles can be created just after inflation. Thus far, attention has focused on a single or many inflaton fields coupled to a single scalar field. However, generically we expect the inflaton to couple to many other relativistic degrees of freedom present in the early universe. Using simulations in an expanding Friedmann-Lema\^itre-Robertson-Walker spacetime, in this paper we show how preheating is affected by the addition of multiple fields coupled to the inflaton. We focus our attention on gravitational wave production--an important potential observational signature of the preheating stage. We find that preheating and its gravitational wave signature is robust to the coupling of the inflaton to more matter fields.Comment: 7 pages, 8 figures, v2 submission version, thank you for comments

    Tiling strategies for optical follow-up of gravitational-wave triggers by telescopes with a wide field of view

    Get PDF
    Aims. Binary neutron stars are among the most promising candidates for joint gravitational-wave and electromagnetic astronomy. The goal of this work is to investigate various observing strategies that telescopes with wide field of view might incorporate while searching for electromagnetic counterparts of gravitational-wave triggers. Methods. We examined various strategies of scanning the gravitational-wave sky localizations on the mock 2015−16 gravitational-wave events. First, we studied the performance of the sky coverage using a naive tiling system that completely covers a given confidence interval contour using a fixed grid. Then we propose the ranked-tiling strategy where we sample the localization in discrete two-dimensional intervals that are equivalent to the telescope’s field of view and rank them based on their sample localizations. We then introduce an optimization of the grid by iterative sliding of the tiles. Next, we conducted tests for all the methods on a large sample of sky localizations that are expected in the first two years of operation of the Laser interferometer Gravitational-wave Observatory (LIGO) and Virgo detectors. We investigated the performance of the ranked-tiling strategy for telescope arrays and compared their performance against monolithic telescopes with a giant field of view. Finally, we studied the ability of optical counterpart detection by various types of telescopes. Results. Our analysis reveals that the ranked-tiling strategy improves the localization coverage over the contour-covering method. The improvement is more significant for telescopes with larger fields of view. We also find that while optimizing the position of the tiles significantly improves the coverage compared to contour-covering tiles. For ranked-tiles the same procedure leads to negligible improvement in the coverage of the sky localizations. We observed that distributing the field of view of the telescopes into arrays of multiple telescopes significantly improves the coverage efficiency, by as much as 50% over a single telescope with a large field of view in 2016 localizations while scanning ~100 deg2. Finally, through analyzing a range telescopes with wide field of view, we discovered that counterpart detection can be improved by sacrificing coverage of localization in order to achieve a greater observation depth for telescopes with very large field of view and small aperture, especially if the intrinsic brightness of the optical counterparts is weak
    • 

    corecore