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It has been speculated that gravity could be an emergent phenomenon, with classical general
relativity as an effective, macroscopic theory, valid only for classical systems at large temporal and
spatial scales. As in classical continuum dynamics, the existence of underlying microscopic degrees
of freedom may lead to macroscopic dissipative behaviors. With the hope that such dissipative
behaviors of gravity could be revealed by carefully designed experiments in the laboratory, we
consider a phenomenological model that adds dissipations to the gravitational field, much similar
to frictions in solids and fluids. Constraints to such dissipative behavior can already be imposed by
astrophysical observations and existing experiments, but mostly in lower frequencies. We propose a
series of experiments working in higher frequency regimes, which may potentially put more stringent
bounds on these models.

PACS numbers: 04.80.Nn, 95.55.Ym, 07.60.Ly

I. INTRODUCTION

Gravity has not yet been unified with other fundamen-
tal forces, which have been put into the Standard Model
of particle physics. General relativity, currently the most
successful theory for gravity, describes gravity as the clas-
sical geometry of space-time, which interacts only with
the classical energy-momentum content of matter. No
fully consistent quantum theory of gravity has been found
— nor is it completely clear how quantum gravity can be
experimentally probed.

General relativity has been systematically verified with
increasing accuracy in the classical domain, with more
opportunities arising from higher precision laboratory ex-
periments and gravitational-wave detection [1, 2]. On the
other hand, having achieved great success in the micro-
scopic world, quantum mechanics are now going to be
tested in systems involving macroscopic mechanical ob-
jects, where gravity may start playing a role [3–14].

In this paper, we shall still start off as testing general
relativity, namely, testing the speculation that general
relativity is not a fundamental theory, but an emergent
one that appears to take place only in macroscopic spa-
tial and temporal scales. In this work, we propose an
experimental strategy to search for evidence of emergent
gravity. We will soon see that the tests here will be in-
timately connected to tests of quantum mechanics, in
systems where gravity plays a role.

Emergent gravity has been motivated from at least
two types of reasoning [15]. The hydrodynamical point
of view, proposed by Sakharov [16, 17], argued that Ein-
steinian gravity can naturally arise at large scales due to
the dependence of vacuum energy (of non-gravitational
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fields) on spacetime geometry. The thermodynamical
point of view focuses on the role played by horizons, ini-
tially from the fact that the area of an event horizon
never decreases [18] and the creation of particles by black
holes [19]. Later, the work of Jacobson made a more gen-
eral extension to Rindler horizons of particles that can
exist anywhere in a spacetime [20], and made the con-
nection between Einstein’s equation and an equilibrium
equation of state. Recent work further considered the
microscopic origin of the horizon entropy — motivated
by the holographic principle [21] and by loop quantum
gravity [22].

A macroscopic dynamics emerging from an averaging
over microscopic dynamics often has two features: (i)
fluctuations can arise from the imperfect averaging over
the microscopic degrees of freedom, (ii) the macroscopic
equations of motion can be non-conservative (often time
asymmetric, or dissipative) due to excitations of the mi-
croscopic degrees of freedom that do not instantaneously
couple back to the macroscopic dynamics. An instruc-
tive example is the emergence of classical continuum dy-
namics from molecular dynamics and (quantum) atomic
physics. The macroscopic properties of solids and liq-
uids, for example: (i) density, elastic moduli, compress-
ibility, as well as (ii) thermal conductivity, friction coeffi-
cient, viscosity all in fact emerge from the microphysics of
molecules. Because fundamental physical laws are usu-
ally considered to be time symmetric, those properties
in group (ii), which are associated with time asymmetric
physical processes, are direct signatures of the underlying
molecular dynamics. In fact, physical processes associ-
ated with these properties had been discovered and well
characterized long before the underlying microphysics
was well understood — which took place after more di-
rect observations of molecular structure became feasible.
The above analogy generates hope that even though the
microphysics that underlies gravity may well be taking
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place at very high energies and very small spatial and
temporal scales, astrophysical observations and labora-
tory experiments in the currently accessible regime might
be able to reveal their existence.

Even without specifically considering the concept of
emergence, testing the validity of general relativity has
long been a major research effort [1, 2]. However, most
of these tests were performed in astrophysical or cosmo-
logical settings, for example in the solar system [23, 24]
and in relativistic binaries [25, 26]. In the context of
laboratory tests, deviation from Newton’s inverse square
law at small distances has been proposed as a possible
signature of models with extra dimensions [27–29]. Ex-
periments have been performed to put bounds on such
deviations [30]. Experimental bounds on Lorentz invari-
ance (of many kinds) have also evolved substantially [31–
34] since the days of the Michelson-Morley experiment
and now tightly constrain several alternative gravity the-
ories [35, 36]. All such tests focus on low frequencies
— since the theories being tested for mainly have conse-
quences in these regimes. In this work, we shall consider
families of theories motivated by emergence, in particular
those that have signatures toward higher frequencies and
smaller length scales. We will consider a variant of non-
local models [37, 38], which were indeed motivated by
space-time having “memories” in the past. In these mod-
els, the gravitational field lags the motion of the source,
even in the near zone. We will focus on tests on spatial
and temporary scales accessible in the lab.

From a different starting points, experiments have also
been proposed for testing quantum mechanics involving
macroscopic objects [3–14]. Some of the theoretical mod-
ifications of quantum mechanics were motivated by grav-
ity [5, 9, 39, 40], some are motivated by the determinism
of the classical world [41, 42], some both [39, 40]. Most
of these experiments focused on the stochastic aspect of
the modifications, although dynamical effects were also
speculated [5, 43, 44].

In this work, we will recognize that our variant of non-
local gravity [37, 38] and the Diosi-Penrose (DP) gravity-
induced decoherence [39, 40] can be unified — both can
arise from an infinite family of fields that couple with the
energy-momentum content of space-time: non-local grav-
ity as the dynamical consequence of the coupling, while
DP decoherence as the stochastic back action. Such a
connection has been hinted by Diosi [43, 44], but we shall
make a more general argument. We will then explore
possible experimental configurations that will test this
unified model.

This paper is organized as follows: In Section II, we
briefly explain how dissipation might be incorporated
theoretically, and set up a phenomenological model to
test in the weak-field regime, which is parametrized by
phase-lag φ(ω) (see the discussion in Sec.II A), similar to
the loss-angle used to characterize material losses [45].
In Section IV, we briefly discuss how astrophysical pro-
cesses might be used to constrain φ(ω), and argue that
there exists a new regime that is particular suitable for

lab experiments. In Sec. V, we propose experimental
strategies and explore their potential performance.

II. DISSIPATION IN SPACE-TIME

In this section, we set up a strawman theory to fit
in our intuition about spacetime dissipation. In partic-
ular, we would like to explore dissipative modifications
to general relativity where the dynamics of spacetime is
changed. This could be due to tracing out unknown “en-
vironmental" or microscopic degrees of freedom, but here
we focus only on a effective theory for the spacetime itself.
In this sense, these strawman models are phenomenologi-
cal, as the unknown microphysics no longer enters the dy-
namics, but rather affects the parameters of these models.
It is also possible that different micro-physical theories
lead to similar phenomenological models at low energies
and large spatial scales.

In addition, we expect dissipative effect leads to a dis-
tinctive experimental signature in the linearized gravity
regime: Newton’s constant will effectively become com-
plex in the frequency domain, so that for an oscillatory
source, the phase of the Newtonian gravitational poten-
tial will lag behind that of the oscillatory of the motion,
with a finite phase difference, even in the near zone. We
shall discuss the phenomenology of such models, illus-
trating how they differ from traditional modified gravity
models.

A. Non-local Einstein’s Equation and its relation
to existing modifications to GR

Let us assume that the presence of unknown micro-
physics introduces a delayed-response for the spacetime
geometry with respect to its matter source. This delayed-
response effectively makes the Einstein equations to be
non-local, which may be written as

Gµν(t,x) = 8π

∫ +∞

−∞
Kµναβ(t− t′)Tαβ(t′,x)dt′. (2.1)

This is a generalization of non-local gravity models pro-
posed by Hehl and Mashhoon [37, 38]. The form of
Eq. (2.1) is already written into a 3+1 form, which indi-
cates that the Einstein tensor at one space-time event is
determined as a weighted average over the worldlines of a
family of fiducial observers. The existence of these special
observers implied a preferred frame — as a consequence
of the unspecified miscrophysics, similar to the effect of
extra degrees of freedom in other modified gravity theo-
ries — for example the Einstein-aether theory [46], where
the configuration of the aether field effectively defines a
preferred frame. 1

1 Some other approaches to nonlocal gravity include [47, 48] non-
commutative geometry effects.
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The filter Kµναβ is a bi-tensor, and parametrizes pos-
sible delayed-responses. It is symmetric in its first and
second pairs of indices (i.e. Kµναβ = Kνµαβ = Kµνβα),
in order to respect the symmetry of Gµν and Tµν . Since
we have already chosen a preferred set of observers for
the non-local integral, let us also perform a 3+1 decom-
position of different components of the tensor Kµναβ . To
illustrate properties of such models, we choose a filter
function of

Kµναβ(t− t′) = gµαgνβδ(t− t′)
+ [K(t− t′)− δ(t− t′)]gα0gβ0gµ0gν0

(2.2)

so that only the 00 component of the Einstein equations
is changed. In the vacuum case we recover the source-
free Einstein equations Gµν = 0, which suggests that the
propagation of gravitational waves is unchanged in this
modified gravity theory. Therefore in order to experimen-
tally test its effect, we need to study the cases where the
stress energy tensor of matter is nonzero. As explained
in Sec. II C, the matter equation of motion is modified,
which can be derived from Eq. 2.1 and the Bianchi iden-
tity.

In addition, Eq. 2.1 shows that the Einstein tensor Gµν
depends non-locally on the stress-energy tensor Tµν ; in
other words, space-time curvature depends non-locally
on its energy-momentum content. In order for this de-
pendence to be causal, we must impose

K(t) = 0 , t < 0 . (2.3)

Let us write the Fourier transformation of K as∫ ∞
−∞

dt eiωtK(t) ≡ eiφ(ω) , (2.4)

where φ(ω) is expected to be small. If φ(ω) is a rational
function, condition Eq. 2.3 can be achieved by requiring
φ(ω) to have no poles on the upper half complex plane.
Furthermore, in order to keep Gµν and Tµν real-valued
in the time domain, we need to impose K(t) ∈ R, or

φ(ω) = −φ∗(−ω) , ω ∈ R . (2.5)

In particular, φ(0) ∈ R, which can be absorbed into the
definition of the Newton’s constant, leading to

φ(0) = 0 . (2.6)

Furthermore, in order for φ to represent a phase lag
(instead of a variation in the magnitude of the New-
ton’s constant), we shall require φ(ω) to be real-valued
for low frequencies — although in general requiring φ(ω)
to be real-valued for all frequencies may conflict with the
requirement that K be causal. One prescription is to
choose

eiφ(ω) =
1

1− iωτ∗
, or φ(ω) ≈ ωτ∗ , τ∗ > 0 (2.7)

which leads to

K(t) =
1

τ∗
e−t/τ∗Θ(t) , (2.8)

with Θ the Heaviside step function. With this filter func-
tion, the space-time geometry has a (short) response time
of τ∗.

We assume that the dynamics of microscopic degrees
of freedom only takes place at high frequencies, while in
low frequencies accessible by astrophysical processes and
our experiments, φ can be simply Taylor expanded as

φ(ω) = ωφ′(0) +
ω2

2
φ′′(0) + . . . . (2.9)

Since the leading order term of the above expansion is
the same as Eq. 2.7, we can identify

τ∗ ≈ φ′(0) ≈ φ(ω)

ω
, (2.10)

which all have the physical meaning of time-lag.

B. Linearized Einstein’s Equation and its solution
for periodic source

In the case where gravity is weak, we can simplify
Eq. 2.1 by considering a perturbed flat metric gµν =
ηµν+hµν , with |h| � 1. Within such limit, Eq. 2.1 can be
linearized, while the only different component from lin-
earized Einstein’s equation is (C.f. Eq. 2.1 and Eq. 2.2)[

−ω2 +∇2
]
h̄00 = −16πeiφ(ω)T 00 . (2.11)

Here h̄µν is the trace-reversed spacetime metric pertur-
bation,

h̄µν = hµν −
h

2
ηµν , (2.12)

which satisfies the gauge condition (with 4-dimesional
covariant derivative)

∇µh̄µν = 0 . (2.13)

Note that in order to obtain Eq. (2.11) we have performed
a 3+1 split of coordinates, transformed t into the fre-
quency domain, and used x to denote spatial coordinates.
As discussed in Sec. II A, φ(ω) is a real-valued function
characterizing phase-lag as functions of frequency, and
Tµν(ω,x) is the stress-energy tensor of the source. The
gauge condition described in Eq. (2.13) considerably sim-
plifies the form of linearized Einstein’s equation, and it
is still compatible with dissipative-gravity modifications,
as the left hand side of Eq. (2.1) is unmodified.

We now solve the wave-equation Eq. (2.11) and obtain
a retarded solution

h̄00(f,x) = 4

∫
d3x′

T00(f,x′)

|x− x′|
ei[2πf |x−x

′|+φ(ω)] . (2.14)
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Suppose the source is oscillating at a constant frequency
f0 = ω0/2π. In the near zone (2πf0R/c� 1) we have

h̄00(t,x) ≈ 4

∫
d3x′

T00(t,x′)

|x− x′|
eiφ(ω0). (2.15)

Again, the form of Eq. (2.11) together with the require-
ment that Tµν and h̄µν be real-valued in the time do-
main, require that φ(0) = 0. The power series expan-
sion in Eq. 2.9 then allows us to switch freely between
φ and φ′ at low frequencies. Physically φ carries the in-
terpretations of a phase lag while φ′ is a time lag. We
also note that this expansion does not necessarily hold
at high frequencies, where microphysics of the underly-
ing “environment" may contribute to a very different φ.
For concreteness, subsequent sections detailing existing
constraints and experimental sensitivity, which are sup-
posedly targeting much lower frequencies comparing to
underlying microscopic motions, will have final results
phrased in terms of φ.

To see how this model modifies near zone interactions,
we work with the gravitational potential UDG of our
model, defined as

g00 = η00 + h00 (2.16)
= −1 + 2UDG. (2.17)

Using this with Eq. 2.15 and Eq. 2.12, for a periodic
source moving at frequency f0, we see that

UDG =

∫
dx′

ρ(t,x′)

|x− x′|
eiφ(ω0), (2.18)

where ρ(t,x′) = T00(t,x′). Note that this differs from
the usual Newtonian potential, U , simply by a phase,
i.e., UDG = Ueiφ(ω0).

C. Bianchi Identity and equations of motion in the
Newtonian limit

Now let us consider the equation of motion for matter
based on Eq. (2.1). Unlike last section where we focus
on the metric in the wave-zone, here we are mainly inter-
ested in the matter motion in the Newtonian near-zone.
The Bianchi identity Gµν |ν = 0 requires that

Gµν,ν + ΓµναG
αν + ΓνναG

µα = 0 , (2.19)

where the Einstein tensor Gµν is to be replaced by the
right hand side of Eq. 2.1, and the above equation be-
comes the modified equation of motion for matter. Be-
cause of the modification, the matter motion is generi-
cally non-conservative. As a simple example, applying
Eq. 2.19 and Eq. 2.1 to a point mass in the Newtonian
limit, the equation of motion is just

0 ≈
[
T i0(t,x)

]
,0

+ Γi00

∫ ∞
−∞

dt′K(t− t′)T 00(t′,x)

≈m
[
vi(t)

]
,0
−m1

2
∂ih00

∫ ∞
−∞

dt′K(t− t′) . (2.20)

As we anticipate that the theory recovers the Einstein
gravity in the static limit,

∫∞
−∞K(t− t′)dt′ should be set

to one. As a result, the point mass equation of motion
becomes

ai(t) =
f i(t)

m
, (2.21)

where f i is the Newtonian gravitational force acting on
the point mass. As we can read from Eq. 2.1 and discus-
sion in later sections, the metric is affected not only by
local matter stress-energy, but also contributions of the
past light-cone. In particular,

fi(t)

m
=

∫ ∞
−∞

dt′K(t− t′)Ψ,i(t
′,x(t′)) , (2.22)

and here Ψ is the Newtonian potential. Comparing the
above equation with the point mass equation of motion,
we find that

ai(t) =

∫ ∞
−∞

dt′K(t− t′)Ψ,i(t
′,x(t′)) . (2.23)

This means that within the Newtonian limit, this dis-
sipative gravity model leads to an different equation of
motion from General Relativity.

D. Relation between non-local gravity and
spontaneous wave-function collapse

Let us turn to collapse models of quantum mechanics.
The initial motivation for these models were from the
randomness of quantum-state reduction, and its incom-
patibility with classical determinism. The assumption
of these models are that quantum states of macroscopic
objects spontaneously become localized due to an intrin-
sic collapse process [39–42]. As was later realized, these
collapses can all be modeled in general as a continuous
measurement on matter density [8, 10] — with spatially
distributed measuring devices that have different mutual
correlations.

In a continuous quantum-measurement process, back
action takes the form of back-action noise, but also some-
times in the form of dissipation. This has lead Diosi to
further propose that the collapse models may also cause
the Newtonian gravitational potential to have a delay τ∗
when responding to matter density changes [44]. This is
the same as Eq. (2.9) as we consider the lowest-frequency
contribution from non-local gravity. Diosi argued that
current experimental data can constrain τ∗ to around
1ms. However, in this paper we shall remain flexible
about the function form of φ(ω).

Let us further argue that a more general φ(ω) can
also arise from the quantum-measurement consideration.
More specifically, a continuous measurement process can
be modeled as coupling the observable we need to mea-
sure with a field degree of freedom, which has an incom-
ing state, and the out-going state contains information
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about that degree of freedom. Quantum or thermal fluc-
tuations in the incoming state provides the stochastic
back-action, while information contained in the out-going
state corresponds to dissipation.

Now suppose we apply this to space-time geometry.
If h00(t,x) is being continuously monitored, we need to
introduce an extra dimension η, and an additional field
n — for each x — that propagates on the t-η plane. The
field couples to h00 as η approaches 0 — it therefore gains
information about h00, and acts back to the dynamics of
h00. In this way, depending on the propagation law of
n along the extra dimension, and the detailed way it is
couple to h00, arbitrary shapes of the phase delay φ(ω)
between h00 and energy density can be constructed.

In general, as we consider different x, coupling to dif-
ferent components of the metric, as well as the above
dependence on η, we can recover general non-local theo-
ries of gravity.

III. EFFECTS ON ONE AND TWO-BODY
MOTIONS

In this section, we shall discuss the dynamical effect of
emergent gravity on one and two bodies.

A. Effects on Single Body Motion

Consider a spherical, homogeneous object (with mass
M , radius R) moving with non-relativistic velocity v rel-
ative to the preferred frame where Eq. (2.1) holds. Ac-
cording to Eq. (2.23), there is a force generated by the
“past” gravitational field of the same object. This self-
gravitational force is dissipative for the object’s motion,
as it generates acceleration anti-parallel to the direction
of motion:

a = −GM
R3

v

∫ ∞
0

tK(t)dt , (3.1)

where G has been restored in this equation.
If we assume that the kernel function is described by

Eq. (2.8), the acceleration evaluates to

a = −GM
R3

τ∗v = −GM
R3

φ′(0)v . (3.2)

The phase-lagging feature of the nonlocal Einstein equa-
tion inevitably leads to a dissipative self-interacting grav-
itational field.

B. Effects on Two-Body Motion

In order to calculate effects on two-body interactions,
we take a step back and look at the “full” theory. Con-
sider

G00(f,x) = 8πeiφ(2πf)T00(f,x)

≈ 8π[1 + iφ(2πf)]T00(f,x). (3.3)

Writing the Fourier transform of iφ(ω) as Φ(t) (which is
K(t)− δ(t)), the time-domain version becomes

G00 = 8π

[
T00 +

∫ 0

−∞
Φ(t− t′)T00(t′)dt′

]
. (3.4)

Assuming Φ(t− t′) is a causal kernel implies Φ(t− t′) = 0
for t < t′, allowing us to extend the limits of the integral
to ±∞, resulting in our final expression

G00 = 8π

[
T00 +

∫ ∞
−∞

Φ(t− t′)T00(t′)dt′
]
. (3.5)

Figure 1. Binary motion taking into account the dissipative
gravity effect. In the Newtonian limit, star A feels the instan-
taneous gravitational attraction from star B, as well as the
contribution form “past" gravitational field due to the dissi-
pative gravity effect, according to Eq. (3.5).

To estimate the effect in binary motion, we consider
two equal mass stars A and B in orbit around each other
as shown in Fig. (1). In the Newtonian limit, star A
and B feel the instantaneous attraction force from each
other, which are orthogonal to their velocities. If we fur-
ther take into account the dissipative gravity effect, as
shown by Eq. (3.5), the external gravitational field act-
ing on star A (and vice versa for star B) contains a piece
that originates from the past of star B. These “past"
gravitational fields exert a tangential force on star A’s
orbital motion, which in turn introduces additional or-
bital energy loss/gain (depending on the sign of φ(ω))
with respect to the gravitational radiation. For example,
if φ(ω) > 0, although the gravitational field lags behind
the source motion, the tangential force is along the star’s
direction of motion and and the binary motion actually
gains energy according the positive phase lag. In this
case we see that the rate of energy gain is given by

ĖMG ∼ q
M2

r2

∫ 0

−∞
Φ(t− t′) sin[2πf(t− t′)]dt′

∼ q(Mf)4/3φ(2πf), (3.6)

where q = m1m2/(m1+m2)2 is the symmetric mass ratio,
the post-Newtonian parameter v2 = (2πMf)2/3, and the
subscript MG stands for mutual gravity. As we require
that the standard Newtonian result to be recovered in the
static limit, this constrains the DC phase-lag such that
φ(f = 0) = 0. Therefore if the frequency is sufficiently
low, on can Taylor-expand the phase and obtain

ĖMG ∼ qM−1(Mf)7/3φ′0. (3.7)
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Experiment Upper limit on
φ(2πf0)

f0 (Hz) Reference

PSR J0737-3039 7.9× 10−36 1.1× 10−4 [49]
PSR B1534+12 4.3× 10−38 2.8× 10−5 [50]
PSR B1913+16 2.4× 10−39 3.6× 10−5 [51]
PSR B2127+11C 1.6× 10−37 3.5× 10−5 [52]

Earth Orbital Motion 3× 10−17 3.2× 10−8 [53]
Shapiro delay 0.014 3.2× 10−8 [54–56]

Torsion Pendulum 0.1† 0.084 [57]
Quadrupole Antenna 0.1† 60.5 [58]

Cantilever 1× 10−3 324.1 [59]
Rotor/Cantilever 0.1 353 [60]

Table I. Constraints on φ derived from existing measurements
at different frequencies. Quantities with a † superscript are
estimated by assuming a 0.1 rad uncertainty in the phase at
the specified frequency. The phase lag in the Shapiro delay
measurement is obtained by converting the constraint on the
time-lag estimate on the same system.

However, this is not the leading order dissipative grav-
ity effect, which comes from the self-dissipative dragging
force as shown in the previous section. In the binary
system, such a damping mechanism dissipates energy at
rate

ĖSG = −
(
m2

1

R3
1

v1 +
m2

2

R3
2

v2

)
φ′0 = −qMvφ′0

(
m1

R3
1

+
m2

R3
2

)
,

(3.8)
which is about a factor of r3/R3 larger than ĖMG.
To help further understand this result, recall that
quadrupole radiation of gravitational waves has power

Ė2 ∼ −
32

π
q2(Mf)10/3, (3.9)

which is one and a half post-Newtonian order higher than
EMG, and consequently even smaller comparing to ESG!
A direct consequence of this observation is that binary
pulsars should provide the best observational constraints
on the magnitude of φ at low frequencies, because of the
high compactness of neutron stars.

IV. EXISTING OBSERVATIONAL AND
EXPERIMENTAL CONSTRAINTS

A. Binary pulsars

According to our previous analysis, if we turn on the
dissipative gravity effect, the change of fractional energy
emission rate for a binary pulsar system is

∆Ė

Ė
=
ĖSG

Ė2

=
(2π)2/3πφ′0M

32q(Mf)3

(
m1

R3
1

+
m2

R3
2

)
≈ (2π)2/3πφ′0M

2

32q(Mf)3R3
. (4.1)

and, denoting Pb as the period of the binary motion, we
have

∆Ṗb

Ṗb
=

3

2

∆Ė

Ė
. (4.2)

Therefore the accuracy of period measurement constrains
the magnitude of possible dissipative gravity effect. We
can then use the fact that φ′0 = φ(2πf0)/(2πf0) to phrase
our results in terms of the phase angle. The compact-
ness of neutron stars M1,2/R1,2 can be determined from
different models of nuclear equation of state, and here
for simplicity the neutron star radius R is estimated as
13km. Constraints from a representative sample of bi-
nary pulsars appear in Table I. We can see that pulser
systems give really stringent upper bound on φ at low
frequencies (recall the 1ms constraint on τ∗ in [44]), as
nuclear densities are much higher than normal matter.
On the other hand, it remains interesting to constrain φ
at higher frequencies, using table-top experiments.

B. Solar system test

Solar system test of gravity theories generally involves
measuring perihelion precession, spin precession mea-
surement (such as “Gravity Probe B") and test of the
“Weak Equivalence Principal". None of the above exper-
iments seems to constrain a friction-type force well [61].
We can nevertheless expect the period change after one
orbital period of earth:

∆T

T
=

3

2

∆E

E
= 3

GMET

R3
Ev

φ′0 , (4.3)

where ME , RE are the earth mass and average radius
respectively. Plugging in the numbers, we find

φ′0 ∼ 2× 102
∆T

T
s ∼ 1.4× 10−10s , (4.4)

where we have used the orbital period change of earth
due to tidal friction ∼ 2.3ms/century as an estimate [53].
Obviously this is a much looser constraint than the binary
pulsar tests, because normal matter density is much lower
than the nuclear matter density. As the earth orbital
period is longer than the periods of binary pulsars, this
test belongs to the low-frequency regime which is ruled
out by binary pulsar tests.

C. Shapiro Delay

Shapiro delay is the time delay of light due to the lo-
cal gravitational field of a nearby massive body [56, 62].
For a static source, our model predicts the same static
gravitational field as general relativity, so there is no ob-
servable Shapiro delay effect. However, as we have shown
above, this is not the case for a moving source.
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In the solar system, the time delay of light for a mov-
ing source has been measured in 2002 [54, 55], as Jupiter
moved by the line of sight to quasar J0842+1835. The
timing sequence of the delay signal was applied to con-
strain the speed of gravity, which was measured to be
consistent with the speed of light, with a relative uncer-
tainty up to 20%. We notice that the phase-lag due to
dissipative gravity, can be effectively translated to a shift
in the “speed of gravity" in this case. More specifically, if
the closest distance between the trajectory of the light is
d and the velocity component of Jupiter moving towards
the light trajectory is vd, then the time lag is roughly
bounded by

φ′vd
d
≤ 20% , or φ′ ≤ d

5vd
. (4.5)

According to the parameters presented in [54, 55], vd ∼
14 km/s and d ∼ 106km, and consequently we obtain
φ′ ≤ 7×104s. Because the moving-body correction to the
Shapiro delay is already a second order effect, in terms of
vd/c, this measurement a gives much weaker constraint
on φ′ than the test based on planetary motion.

D. Near field experiments

Although astrophysical tests provide the tightest con-
straints on our model, laboratory-scale experiments de-
signed to test the nature of near-field gravity provide con-
straints at much higher frequencies. Examples include
torsion pendulua [57] and the quadruple antenna [58],
which look for deviations in the amplitude and do not
report phase information. In these cases, we assume the
experiment has observed no phase lag greater than .1 ra-
dians. Other experiments involving cantilevers [59] and
improvements thereof [60] explicitly measure the phase
angle. Table I summarizes these constraints.

The self-damping effect for moving bodies described in
Sec. III A has the consequence that there is an intrinsic
damping force experienced by any harmonic oscillator in-
volving moving masses. From Eq. (3.2), and assuming a
harmonic oscillator with natural angular frequency ω0,
the mechanical quality factor is limited by

Q−1 ≥ Gρ

ω0
τ∗(ω0) =

Gρ

ω2
0

φ(ω0), (4.6)

where ρ = M/R3, and we have allowed the gravitational
delay, φ(ω), to be frequency dependent. Here we see
that the damping effect is greater for low frequency os-
cillators with dense masses. Depending on the value of
φ, this damping could exceed other mechanical dissipa-
tion effects. If this is not the case, the mechanical quality
factor will only be slighly modified by gravitational self-
damping and estimating the non-gravitational mechani-
cal damping could lead to large systematic uncertainty
in the estimation of the gravitational phase lag. For the
oscillators described in Sec. V, we find that the contraint

m

R

ω

d1

Lcav

d2

Figure 2. Plan view of a schematic diagram of the exper-
iment. In this example, a rotor with 6 spokes and masses
spins at an angular frequency ω near a rigid Fabry-Perot cav-
ity with an angular eigenfrequency 6ω. The laser beam passes
underneath the masses.

placed by direct measurement of the phase lag to be more
stringent than the constraint set by measuring the qual-
ity factor.

E. Gravitational wave experiments

It is clear from Sec. III B that our model has implica-
tions for gravitational wave detection, effecting the coa-
lescence of compact binaries. In general, the phase evolu-
tion of the waveforms will be modified and a careful study
of the full implications of Eq. (2.1) is required. These is-
sues will be explored in future studies. However, for the
model under consideration here, binary pulsars should
provide a stronger constraint for low frequency motions.

V. EXPERIMENTAL PROBE OF
GRAVITATIONAL DISSIPATION

A. High Frequency Eotvos Experiment

Here we discuss one possible experimental approach for
testing the existence of dissipative gravity, this approach
roughly models the paradigm of the classic experiments
of Baron von Eotvos [63, 64] while incorporating the ex-
perience gained over the past several decades of short
scale gravity experiments [30, 57, 59, 65, 66] The experi-
ment consiststs of an active mechanical Attractor and a
high sensitivity gravitational Responder. They are con-
structed such that their oscillations cause tidal gravita-
tional interactions. By measuring the response of the Re-
spnder, we can look for the possible phase lag predicted
by a dissipative gravity model.

The outline of this Section goes as follows: in Sec-
tion VA1, we estimate the magnitude of the gravita-
tional acceleration induced by our periodic attractor sys-
tem. in Section VA2, we estimate the sensitivity limit
of a mechanical responder which is limied by Brownian
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thermal noise. in Section VB, we calculate the minimum
detectable phase lag using the system we prescribe.

1. Tidal gravitational field of the periodic attractor

Our aim is to probe the frequency dependence of grav-
itational forces and how they may differ, in the non-
relativistic limit, from Newtonian gravity. To this end
we aim to use a system of moving masses that create
a periodic tidal gravitational attraction and will use a
sensitive mechanical system to measure the mechanical
response to the gravitational force. An example of such
a system is shown in Figure 2.

The scaling of the tidal gravitational acceleration of
the periodic attractor system is approximated by

gtidal = GρL, (5.1)

where G is Newton’s constant, ρ is the density of the
material used in the Attractor, and L is a characteristc
length scale of the attractor.

2. Acceleration sensitivity of the responder

To maximize the signal amplitude, we propose to use a
mechanical system with a high quality factor resonance as
our probe of the gravitational force. The motion of the
mechanical system will be sensed using interferometric
metrology to maximize readout sensitivity. With such
a narrow mechanical resonance, and in addition we will
integrate for long times to accumulate larger signal to
noise ratio, for a given resonator system the measurement
is essentially single frequency.

A detailed noise analysis will be presented in Section
VB, and it will show that in most cases the dominant
noise source is Brownian thermal fluctuations of the me-
chanical resonator.

Near the mechanical resonance, the force power spec-
tral density of thermal fluctuations seen by the mechan-
ical responder is given by

Sth
F = 4mkBT

ω0

Q
, (5.2)

where kB is Boltzmann’s constant, m is the mass of the
responder, T is the temperature, ω0 is the resonant fre-
quency, and Q is the mechanical quality factor.

Because we want to measure the sensitivity to gravita-
tional acceleration, in units of acceleration power spectral
density, the thermal noise is

Sth
g = 4kBT

ω0

mQ
. (5.3)

3. Sensitivity to phase lag

The behavior of the mechanical resonance forces the
Newtonian signal component to be in the orthogonal

Parameter Cantilever Diluted
Cantilever

Rigid
Cavity

Pendula

Responder
Mass

1mg 1mg 300 g 1 kg

Responder Q 106 1010 108 108

Lowest
Eigenfrequency

200Hz 40 kHz 10 kHz 2Hz

Temperature 100mK 100mK 1K 120K
Stored Power 10mW 60W 1kW 10W

Table II. Physical parameters of proposed gravitational re-
sponders.

quadrature with respect to the signal of the periodic at-
tractor. And, ignoring systematic effects which will be
discussed in Section VE, any in-phase signal will be due
to the dissipative gravity effect. The magnitude of the
signal in acceleration units is

gφ = φ(ω)gtidal, (5.4)

and this is being compared to the RMS thermal acceler-
ation of the oscillator due to thermal noise,

√
〈g2th〉 =

√
Sth
g

τ
, (5.5)

where τ is the integration time, and we assume that Sg is
approximately constant near the mechanical resonance.
Therefore the minimum detectable dissipation phase an-
gle detectable with an SNR of unity after a time τ is

φ(ω0) =
1

GρL

√
4kBTω0

mQτ
. (5.6)

Given the calculation shown in Figure 3, we can
estimate that gtidal ≈ 1 nm/s2, and assuming ω0 =
2π × 2 kHz, Q = 108, T = 1 K, m = 0.3 kg, and
τ = 24 hours, the minimim detectable phase angle is
φ = 3.7× 10−7 radians.

B. Experimental Designs and Sensitivity Limits

The example given in SectionVA1 is illustrative in
showing the general order of magnitude of an expected
signal. For a more detailed analysis including a noise
budget estimate, it is necessary to define a specific res-
onator cavity geometry and readout scheme.

Here we describe a few potential Responder configu-
rations that are common in the gravitational-wave and
opto-mechanics communities. All take the form of a high
finesse Fabry Perot cavity but vary in the configuration
and geometry of the cavity mirrors.

Schematic diagrams of the configurations are given in
Figure 4. Here we will briefly discuss the features of each
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Figure 3. Differential acceleration (peak-peak) between the two ends of a Fabry-Perot cavity with a multi-mass periodic
Attractor (cf. Fig. 2). As the number of masses is increased, the signal frequency increases, although the peak strain is
correspondingly reduced. In all 6 plots, m = 0.01 kg, R = 0.095m, and d1 = 0.12m.

(a) Cantilever Cavity (b) Cantilever Cavity with
Optical Spring Dilution

(c) Massive Rigid Cavity (d) Massive Pendula

Figure 4. Schematic diagrams of four possible gravitational responders.

configuration and provide a noise budget estimate assum-
ing feasible experimental parameters. These parameters
for each configuration are given in Table II.

A pendulum suspended test mass configuration would
be similar to the arm cavities used in large scale

gravitational-wave observatories such as LIGO, however
with reduced physical dimensions.

In this configuration, the sensing cavity is similar to the
rigid kind used for stabilization of lasers. A solid piece
of single crystal silicon with optically contacted mirrors
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Figure 5. Shown here are the detailed noise budgets for the four proposed cavity configurations. The horizontal axis denotes
positive sideband frequencies separated from the cavity mechanical resonance. In most cases the total noise is dominated by
thermal noise of the mechanical oscillator. In the case of the suspended pendulum, the low frequency noise is dominated by
seismic vibrations.

is used to measure the gravitational accelerations.
In the past few decades, microcantilever force sensors

have become widely deployed as high sensitivity force
and acceleration sensors [67], especially in the biological
agent detection fields and radiological. Microcantilevers
have also been used for sensitive fundamental physics
experiments[68], such as Casimir force experiments [69]
and the searches for fifth force and extra dimensions by
looking for short range deviations in the Newtonian 1/r2

law. They are recently also candidates to measure quan-
tum backaction noise [70, 71].

C. Components of the Noise Model

Our noise model consists of several noise terms which
limit the measurement of the gravitational coupling of
the periodic attractor to the responder. Each noise term
is explained below.

To characterize the Responder, in particular, we are
interested in the sensitivity to tidal gravitational accel-
erations. To calculate the acceleration sensitivity, we
first compute the displacement noise contribution from

all terms, then this is multiplied by |χ−1/m| to produce
the acceleration noise. As described in Section VA3, the
sensitivity is maximized at the mechanical resonance, and
the resonance is very narrow, thus we make logarithmic
plots in Figure 5, where the origin of the horizontal axes
are at the mechanical resonance frequencies.

1. Force Noises

a. Seismic Vibrations of the laboratory due to ex-
ternal seismic fluctuations and nearby vibrating machin-
ery will produce motion of the support point of the Re-
sponder cavity. This will be mostly rejected below the
Responder’s mechanical resonance frequency. Near the
resonance the rejection will be imperfect due to imper-
fect matching of the pendular resonant frequencies (we
assume a mismatch of ∼ 0.1%) of the two ends of the
cavity.
b. Newtonian Gravitational Noise Fluctuations in

the Newtonian gravitational potential due to local
sources (e.g. seismic, anthropogenic, air pressure, etc.)
can limit the acceleration sensitivity due to their spatial



11

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105 106

Frequency [Hz]

10-24

10-22

10-20

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

P
h

a
se

 L
a
g

 (
φ
) 

[r
a
d

ia
n

s]

Electro-Weak

QCD

EötWash U. Tokyo
Quadrupole

Stanford
Cantilever

Figure 6. Comparison of Experimental limits and Theoretical Predictions. The arrows represent existing upper limits
on the phase lag angle (cf. Table I). The shaded blue region is excluded due to pulsar observations. To give a sense of scale, the
shaded regions at the bottom of the plot give estimates for φ assuming a dissipation of unity at the Electro-Weak and QCD
length scales. The solid lines are expected upper limits from the experiments described in Sec. VB, where each point in the
line represents an oscillator resonant at that frequency. The thick purple line (from 1-30 Hz) represents the massive pendulum
cavity. The thick orange line (from 30-3000 Hz) represents the small cantilever cavity. The thick grey line (from 1-100 kHz)
represents the rigid spacer cavity.

gradients across the ends of the Responder cavity [72, 73].
As most of these fluctuations are sourced by mechanical
vibrations (and have a rather red power spectrum), they
are most serious for the massive suspended cavity and
least serious for the rigid, monolithic cavity (cf. Fig. 4).
c. Thermal Noise Several different kinds of thermal

noise are relevant for these experiments. Internal fric-
tion of the suspension support elements, cantilever flex
joints, and rigid cavity spacer result in Brownian forces
which move the mirrors. The same kind of internal fric-
tion in the mirror coatings also produces Brownian [45]
strain fluctuations of the coating phase. Thermodynamic
temperature fluctuations [74, 75] can lead to apparent
optical cavity length fluctuations through a finite ther-
mal expansion coefficient of the mirror substrate (Sub-
strate Thermo-Elastic) and coatings, as well as through
the temperature dependence of the index of refraction of
the coating materials [76, 77]. We refer to the coherent
expansion and refractive fluctuations in the coating as
‘Coating Thermo-Optic’.
d. Quantum Vacuum Fluctuations of the vacuum

electro-magnetic field limit a variety of high precision
measurements [78, 79]. In the particular case of a

Fabry-Perot interferometer, the fluctuations in the phase
quadrature limit the resolution of the optical phase mea-
surement and is usually referred to as ’shot noise’. The
fluctuations in the amplitude quadrature produce radia-
tion pressure ‘shot noise’ in the circulating field within
the Fabry-Perot cavity; this fluctuating pressure moves
the cavity mirrors. This Quantum Vacuum noise limits
these experiments in different frequency bands. If the
thermal noise can be reduced, then squeezed light tech-
niques can be employed to further constrain the space-
time dissipation.

D. Limits on complex phase angle for oscillators of
different frequencies

The sensitivity to tidal accelerations given from our
noise model can be combined with the acceleration in-
duced by the periodic attractor to give a final mea-
surement limit of the complex gravitational phase angle.
Generalizing Equation 5.5 for a frequency varying Sg, the
measurable limit on φ is
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φlim =
1

gatt

√∫ ω0+1/2τavg

ω0−1/2τavg
Sg

dω

2π
(5.7)

where Sg is the power spectral density of the accelera-
tion noise of the receiver, ω0 is the receiver resonance
frequency, and gatt is the differential acceleration caused
by the periodic attractor. We estimate an acceleration
on the order of 1 nm/s2 for gatt, as illustrated in Fig-
ure 3. The limits for the various types of oscillator, for
various possible resonant frequencies, after 24 hours of
integration, are shown in Figure 6.

E. Elimination of Systematic Effects

The sensitivity shown above in Figure 6 includes only
the limits due to Gaussian random noise. In reality, ex-
periments where the signal is so weak are likely to be lim-
ited by systematic effects. In these searches for a gravita-
tional anomaly, we should be especially concerned about
an anomalous signal showing up due to imperfections in
the experimental apparatus, rather than new physics.

There are several systematic effects including time de-
lay, mechanical response limits, mis-estimation of source
oscillator phase, clock / timing errors in the digitizer,
timing error in the interferometric measurement of the
source motion, etc.

We will estimate and subtract these effects in the fol-
lowing ways:

1. Electro-magnetic pickup of the electrical driving
signal in the readout electronics at fdrive will be
rejected since it is not at the gravitational pertur-
bation frequency (fsignal). High frequency harmon-
ics of the drive signal will be attenuated by usual
grounding and shielding practices [80].

2. Patch charges on the Attractor or Responder can
produce a fluctuating electrostatic force at fmotion.
Both the Attractor and Responder can be coated
with a slightly conductive coating to minimize
charge gradients and the Attractor will be enclosed
within a Faraday cage to ground these fields.

3. Light scattered from the cavity mirrors can
backscatter from the Attractor back into the cav-
ity mode to produce a signal at fdrive. To mitigate
this, we will use super polished optics for low scat-
ter and blacken the nearby surfaces. To calibrate

the scatter signal we will apply a few Lambertian
marks to the Attractor at irregular intervals.

4. In order to make a high precision estimate of φ, one
must know the mechanical admittance precisely.
The phase angle of the admittance will be mea-
sured using non-gravitational forces (e.g. with elec-
trostatic force actuators and radiation pressure on
the laser beam). The difference between the elec-
tromagnetic force admittance and the gravitational
admittance will ultimately limit the sensitivity of
this search.

VI. CONCLUSIONS

The confrontation between quantum mechanics and
general relativity points to a modification of one or both
of the theories. Previously, two communities have been
tackling these problems: modification of gravity, and pos-
sible modifications of quantum mechanics. In this work,
we intend to bring up the connection between these two
different approaches. In order to do so, we have written
down model theories that are both be viewed as modifica-
tions to GR and to QM. Experimentally, these can plau-
sibly be probed by precision measurement performed in
the laboratory scale. While it is certain that the proposed
experimental approaches are extremely challenging, they
should be able to, at the very least, place interesting up-
per limits on these types of alternative theories of gravity
and point us towards new physics.
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