11 research outputs found

    Chronic toxicity and carcinogenicity testing in the Sprague–Dawley rat of a prospective insect repellent (KBR 3023) using the dermal route of exposure

    Get PDF
    Abstract The chronic toxicology and carcinogenic potential of 1-(1-methyl-propoxycarbonyl)-2-(2-hydroxyethyl)-piperidine (KBR 3023), a prospective new insect repellent intended for human use, was studied in rats using the dermal route of application. Relying upon the toxicology profile that emerged in the subchronic rat bioassay that was conducted using dermally applied dosages of 0, 80, 200, 500 and 1000 mg KBR 3023/kg body wt/day, it was determined, in concert with the Environmental Protection Agency (EPA), that dermally applied dosages of 0, 50, 100 or 200 mg KBR 3023/kg body wt/day would be used in the conduction of all definitive forms of subchronic, chronic, and lifetime descriptive testing performed with the chemical. Using this testing approach, the specific results of this 2-year study are as follows. All in-life parameters, which included body weight, food consumption, clinical observations, survival, ophthalmology, clinical chemistry, hematology, and urinalysis, were unaffected by exposure to KBR 3023. Similarly, postmortem analyses, which included organ weights and gross pathology, were also unchanged following exposure to KBR 3023. Histopathology at the dose site/skin was characterized by a pattern of acanthosis and/or hyperkeratosis across all doses in 1-and 2-year rats. Beyond the dosing site, cystic degeneration of the liver was described in 2-year 200-mg KBR 3023/kg body wt/day males. No other compound-related non-dosing site lesion was identified at any dose tested. No evidence of a compound-induced neoplasia was suggested in this bioassay. © 1999 Elsevier Science Ireland Ltd. All rights reserved

    Developmental Neurotoxicity Study of Dietary Bisphenol A in Sprague-Dawley Rats

    Get PDF
    This study was conducted to determine the potential of bisphenol A (BPA) to induce functional and/or morphological effects to the nervous system of F1 offspring from dietary exposure during gestation and lactation according to the Organization for Economic Cooperation and Development and U.S. Environmental Protection Agency guidelines for the study of developmental neurotoxicity. BPA was offered to female Sprague-Dawley Crl:CD (SD) rats (24 per dose group) and their litters at dietary concentrations of 0 (control), 0.15, 1.5, 75, 750, and 2250 ppm daily from gestation day 0 through lactation day 21. F1 offspring were evaluated using the following tests: detailed clinical observations (postnatal days [PNDs] 4, 11, 21, 35, 45, and 60), auditory startle (PNDs 20 and 60), motor activity (PNDs 13, 17, 21, and 61), learning and memory using the Biel water maze (PNDs 22 and 62), and brain and nervous system neuropathology and brain morphometry (PNDs 21 and 72). For F1 offspring, there were no treatment-related neurobehavioral effects, nor was there evidence of neuropathology or effects on brain morphometry. Based on maternal and offspring body weight reductions, the no-observed-adverse-effect level (NOAEL) for systemic toxicity was 75 ppm (5.85 and 13.1 mg/kg/day during gestation and lactation, respectively), with no treatment-related effects at lower doses or nonmonotonic dose responses observed for any parameter. There was no evidence that BPA is a developmental neurotoxicant in rats, and the NOAEL for developmental neurotoxicity was 2250 ppm, the highest dose tested (164 and 410 mg/kg/day during gestation and lactation, respectively)

    A critical review of neonicotinoid insecticides for developmental neurotoxicity

    No full text
    <div><p></p><p>A comprehensive review of published and previously unpublished studies was performed to evaluate the neonicotinoid insecticides for evidence of developmental neurotoxicity (DNT). These insecticides have favorable safety profiles, due to their preferential affinity for nicotinic receptor (nAChR) subtypes in insects, poor penetration of the mammalian blood–brain barrier, and low application rates. Nevertheless, examination of this issue is warranted, due to their insecticidal mode of action and potential exposure with agricultural and residential uses. This review identified <i>in vitro</i>, <i>in vivo</i>, and epidemiology studies in the literature and studies performed in rats in accordance with GLP standards and EPA guidelines with imidacloprid, acetamiprid, thiacloprid, clothianidin, thiamethoxam, and dinotefuran, which are all the neonicotinoids currently registered in major markets. For the guideline-based studies, treatment was administered via the diet or gavage to primiparous female rats at three dose levels, plus a vehicle control (≥20/dose level), from gestation day 0 or 6 to lactation day 21. F1 males and females were evaluated using measures of motor activity, acoustic startle response, cognition, brain morphometry, and neuropathology. The principal effects in F1 animals were associated with decreased body weight (delayed sexual maturation, decreased brain weight, and morphometric measurements) and acute toxicity (decreased activity during exposure) at high doses, without neuropathology or impaired cognition. No common effects were identified among the neonicotinoids that were consistent with DNT or the neurodevelopmental effects associated with nicotine. Findings at high doses were associated with evidence of systemic toxicity, which indicates that these insecticides do not selectively affect the developing nervous system.</p></div

    Towards a science-based testing strategy to identify maternal thyroid hormone imbalance and neurodevelopmental effects in the progeny—part III: how is substance-mediated thyroid hormone imbalance in pregnant/lactating rats or their progeny related to neurodevelopmental effects?

    No full text
    This review investigated which patterns of thyroid- and brain-related effects are seen in rats upon gestational/lactational exposure to 14 substances causing thyroid hormone imbalance by four different modes-of-action (inhibition of thyroid peroxidase, sodium-iodide symporter and deiodinase activities, enhancement of thyroid hormone clearance) or to dietary iodine deficiency. Brain-related parameters included motor activity, cognitive function, acoustic startle response, hearing function, periventricular heterotopia, electrophysiology and brain gene expression. Specific modes-of-action were not related to specific patterns of brain-related effects. Based upon the rat data reviewed, maternal serum thyroid hormone levels do not show a causal relationship with statistically significant neurodevelopmental effects. Offspring serum thyroxine together with offspring serum triiodothyronine and thyroid stimulating hormone appear relevant to predict the likelihood for neurodevelopmental effects. Based upon the collated database, thresholds of ≥60%/≥50% offspring serum thyroxine reduction and ≥20% and statistically significant offspring serum triiodothyronine reduction indicate an increased likelihood for statistically significant neurodevelopmental effects; accuracies: 83% and 67% when excluding electrophysiology (and gene expression). Measurements of brain thyroid hormone levels are likely relevant, too. The extent of substance-mediated thyroid hormone imbalance appears more important than substance mode-of-action to predict neurodevelopmental impairment in rats. Pertinent research needs were identified, e.g. to determine whether the phenomenological offspring thyroid hormone thresholds are relevant for regulatory toxicity testing. The insight from this review shall be used to suggest a tiered testing strategy to determine whether gestational/lactational substance exposure may elicit thyroid hormone imbalance and potentially also neurodevelopmental effects.</p
    corecore