24 research outputs found

    Characterization of Red Wine Proanthocyanidins Using a Putative Proanthocyanidin Database, Amide Hydrophilic Interaction Liquid Chromatography (HILIC), and Time-of-Flight Mass Spectrometry

    Get PDF
    Proanthocyanidins are complex polymers of flavan-3-ol monomers and play a key sensory and health role in foods and beverages. We describe here a novel method for characterizing wine proanthocyanidins using a theoretical database comprised of the chemical formula and exact mass of 996 compounds. The database was constructed using the four primary grape and wine proanthocyanidin monomers: (epi)catechin, (epi)catechin-3-O-gallate, (epi)gallocatechin, and (epi)gallocatechin-3-O-gallate, each combined in all possible combinations up to a polymerization of 10. The database was queried against spectra collected using ultrahigh performance liquid chromatography (UHLPC) with a hydrophilic interaction liquid chromatography (HILIC) column and coupled to a high-resolution accurate mass quadrupole time-of-flight mass spectrometer (Q-TOF MS). Two wine samples produced with different post fermentation maceration were analyzed using the presented method to demonstrate application for analysis of diverse proanthocyanidins. The first sample was pressed immediately at the end of fermentation when all sugar had been utilized and the second received eight weeks of post fermentation maceration. The HILIC column combined with high resolution tandem mass spectrometry and database matching provided tentative identification of 89 compounds with excellent resolution and without the need for two-dimensional separations. The identified compounds were visualized with Kendrick mass analysis, a simple technique allowing for rapid visualization of which compounds are present in a given sample

    Impact of Dry Hopping on Beer Flavor Stability

    Get PDF
    To investigate the chemical and sensorial impact of dry hopping time on typical pale ale, a standardized beer was produced and separated into ten vessels. Nine vessels were dry hopped, and one vessel remained un-hopped as a control. Impact of dry hopping contact time was investigated over 96 h. Polyphenols and iso-α-acid t/c ratio were analyzed in both Young and Aged beer samples. Total polyphenol content generally increased in both young and aged treatments compared to controls. Analysis of the t/c ratio suggests that both Young and Aged beers were chemically preserved to some degree after approximately 12 h at the given dry hopping rate regardless of age. Within the Aged beer trials, 96 h of dry hop contact yielded a significant increase in t/c ratio compared to all other Aged trials. This suggests that a 4-day dry hop regime may yield additional oxidative protection of iso-α-acids in beers stored unrefrigerated for 30 days. Descriptive analysis was also performed with an 8-person, trained panel; however, beers were sensorially distinguished by their aging time as opposed to their dry hopping time

    Revitalizing Unfermented Cabernet Sauvignon Pomace Using an Eco-Friendly, Two-Stage Countercurrent Process: Role of pH on the Extractability of Bioactive Phenolics

    No full text
    As the major byproduct of the winemaking industry, grape pomace remains an untapped source of valuable bioactive phenolic compounds. This study elucidated the optimal aqueous extraction parameters for maximizing phenolic extractability, while avoiding the use of harsh conventional solvents and limiting water usage, from Cabernet Sauvignon grape pomace in which the red grape was processed for white wine. In the single-stage aqueous extraction process (AEP), the concurrent impact of pH (2.64–9.36), solids-to-liquid ratio (SLR, g pomace/mL water) (1:50–1:5), and temperature (41.6–58.4 °C) on the total phenolic content (TPC) of Cabernet Sauvignon pomace was evaluated alongside a kinetic study (15–90 min). Optimal single-stage extraction conditions (pH 9.36, 1:50 SLR, 50 °C, 75 min) guided the development of a two-stage countercurrent extraction process (pH 9.36, 1:10 SLR, 50 °C, 75 min) to further reduce water consumption without compromising overall extractability. The countercurrent process reduced fresh water usage by 80%, increased the TPC of the extracts by 18%, and improved the in vitro antioxidant activities (ABTS and ORAC) of the extracts. Untargeted metabolomics enabled the identification of a diverse pool of phenolics, especially flavonol glycosides, associated with grape pomace, while further phenolic quantitation detected improvements in the release of commonly bound phenolics such as ferulic acid, p-coumaric acid, syringic acid, and protocatechuic acid in alkaline extracts compared to the ethanolic extract. This investigation provides an efficient, eco-friendly extraction strategy suitable for applications in functional food, beverage, nutraceutical, and cosmetic industries

    Impact of Grapevine Red Blotch Disease on Cabernet Sauvignon and Merlot Wine Composition and Sensory Attributes

    No full text
    Grapevine red blotch disease (GRBD) is a recently identified viral disease that affects grapevines. GRBD has been shown to impact grapevine physiology and grape composition by altering specific ripening events. However, no studies have been reported on the impact of GRBD on wine composition and its sensory attributes. This study evaluated the impact of GRBD on wine primary and secondary metabolites, in addition to its sensory properties, when making wines from Cabernet Sauvignon and Merlot grapes during two seasons. Wines made with GRBD-impacted fruit were lower in ethanol content when compared to wines made with grapes from healthy grapevines. This was attributed to the lower total soluble sugar (TSS) levels of diseased grapes due to delayed ripening at harvest. GRBD impacted wine phenolic composition by decreasing anthocyanin concentrations and increasing flavonol concentrations in some instances. Additionally, proanthocyanidin concentrations were also consistently higher in GRBD wines compared to wines made from healthy fruit. Descriptive analysis demonstrated that GRBD can impact wine style by altering aroma, flavor, and mouthfeel attributes. However, the extent of GRBD impact on wine composition and sensory properties were site and season dependent
    corecore