57 research outputs found

    t(10;16)(q22;p13) and MORF-CREBBP fusion is a recurrent event in acute myeloid leukemia

    Get PDF
    Recently, it was shown that t(10;16)(q22;p13) fuses the MORF and CREBBP genes in a case of childhood acute myeloid leukemia (AML) M5a, with a complex karyotype containing other rearrangements. Here, we report a new case with the MORF-CREBBP fusion in an 84-year-old patient diagnosed with AML M5b, in which the t(10;16)(q22;p13) was the only cytogenetic aberration. This supports that this is a recurrent pathogenic translocation in AML

    p53 Aberrations do not predict individual response to fludarabine in patients with B-cell chronic lymphocytic leukaemia in advanced stages Rai III/IV

    Get PDF
    Abnormalities of p53 have been associated with short survival and non-response to therapy in chronic lymphocytic leukaemia (CLL). We have evaluated the rate of response to fludarabine as first-line therapy in 54 patients with advanced stage CLL, analysing the cytogenetic profile, aberrations in p53, including the methylation status of its promoter, and the immunoglobulin heavy-chain variable-region (IGVH) mutation status. According to the advanced stage of the disease in this series, 75% of patients presented genetic aberrations associated with poor prognosis: del(17p) and/or del(11q), and no-mutated IGVH genes. Ten patients (18.5%) had methylation in the promoter region of p53. Eighty-three per cent of patients treated achieved a response, with a high rate of complete remission (47.6%). Although we found a significant correlation between failures and the presence of p53 aberrations (P = 0.0065), either with methylation (P = 0.018) or deletion (P = 0.015), 64% of the patients with aberrations in this gene responded to treatment (11/17), suggesting that fludarabine induces high remission rates, even in these patients. This is the first time that the significance of p53 promoter methylation status is described in this pathology, and our data support that this epigenetic phenomenon could be involved in the pathogenesis and clinical evolution of CLL

    Insertion (22;9)(q11;q34q21) in a patient with chronic myeloid leukemia characterized by fluorescence in situ hybridization

    Get PDF
    An unusual cytogenetic rearrangement, described as ins(22;9)(q11;q34q21), was detected in a 49-year-old male patient diagnosed with chronic myeloid leukemia (CML). Reverse transcriptase polymerase chain reaction (RT-PCR) revealed a b3a2 fusion transcript. In order to confirm the cytogenetic findings and fully characterize the inverted insertion, we performed fluorescence in situ hybridization (FISH) assays using locus-specific and whole chromosome painting probes. Our FISH analysis showed the presence of the BCR/ABL fusion gene, verified the insertion and determined that the breakpoint on chromosome 22 where the insertion took place was located proximal to the BCR gene and distal to the TUPLE1 gene on 22q11

    NIN, a gene encoding a CEP110-like centrosomal protein, is fused to PDGFRB in a patient with a t(5;14)(q33;q24) and an imatinib-responsive myeloproliferative disorder

    Get PDF
    We describe a new PDGFRB fusion associated with a t(5;14)(q33;q24) in a patient with a longstanding chronic myeloproliferative disorder with eosinophilia. After confirmation of PDGFRB involvement and definition of the chromosome 14 breakpoint by fluorescence in situ hybridization, candidate partner genes were selected on the basis of the presence of predicted oligomerization domains believed to be an essential feature of tyrosine kinase fusion proteins. We demonstrate that the t(5;14) fuses PDGFRB to NIN, a gene encoding a centrosomal protein with CEP110-like function. After treatment with imatinib, the patient achieved hematological and cytogenetical remission, but NIN-PDGFRB mRNA remained detectable by reverse transcription-PCR

    Molecular characterization of a t(1;3)(p36;q21) in a patient with MDS. MEL1 is widely expressed in normal tissues, including bone marrow, and it is not overexpressed in the t(1;3) cells

    Get PDF
    Patients with myeloid malignancies and either the 3q21q26 syndrome or t(1;3)(p36;q21) have been reported to share similar clinicopathological features and a common molecular mechanism for leukemogenesis. Overexpression of MDS1/EVI1 (3q26) or MEL1/PRDM16 (1p36), both members of the PR-domain family, has been directly implicated in the malignant transformation of this subset of neoplasias. The breakpoints in both entities are outside the genes, and the 3q21 region, where RPN1 is located, seems to act as an enhancer. MEL1 has been reported to be expressed in leukemia cells with t(1;3) and in the normal uterus and fetal kidney, but neither in bone marrow (BM) nor in other tissues, suggesting that this gene is specific to t(1;3)-positive MDS/AML. We report the molecular characterization of a t(1;3)(p36;q21) in a patient with MDS (RAEB-2). In contrast to previous studies, we demonstrate that MEL1, the PR-containing form, and MEL1S, the PR-lacking form, are widely expressed in normal tissues, including BM. The clinicopathological features and the breakpoint on 1p36 are different from cases previously described, and MEL1 is not overexpressed, suggesting a heterogeneity in myeloid neoplasias with t(1;3)
    corecore