1,491 research outputs found

    Scattering Mechanism in Modulation-Doped Shallow Two-Dimensional Electron Gases

    Full text link
    We report on a systematic investigation of the dominant scattering mechanism in shallow two-dimensional electron gases (2DEGs) formed in modulation-doped GaAs/Al_{x}Ga_{1-x}As heterostructures. The power-law exponent of the electron mobility versus density, mu \propto n^{alpha}, is extracted as a function of the 2DEG's depth. When shallower than 130 nm from the surface, the power-law exponent of the 2DEG, as well as the mobility, drops from alpha \simeq 1.65 (130 nm deep) to alpha \simeq 1.3 (60 nm deep). Our results for shallow 2DEGs are consistent with theoretical expectations for scattering by remote dopants, in contrast to the mobility-limiting background charged impurities of deeper heterostructures.Comment: 4 pages, 3 figures, modified version as accepted in AP

    Fluctuation-Dissipation-Theorem violation during the formation of a colloidal-glass

    Full text link
    The relationship between the conductivity and the polarization noise is measured in a gel as a function of frequency in the range 1Hz−40Hz1Hz - 40Hz. It is found that at the beginning of the transition from a fluid like sol to a solid like gel the fluctuation dissipation theorem is strongly violated. The amplitude and the persistence time of this violation are decreasing functions of frequency. At the lowest frequencies of the measuring range it persists for times which are about 5% of the time needed to form the gel. This phenomenology is quite close to the recent theoretical predictions done for the violation of the fluctuation dissipation theorem in glassy systems.Comment: 6 pages + 4 figure

    Mechanical Flip-Chip for Ultra-High Electron Mobility Devices

    Full text link
    Electrostatic gates are of paramount importance for the physics of devices based on high-mobility two-dimensional electron gas (2DEG) since they allow depletion of electrons in selected areas. This field-effect gating enables the fabrication of a wide range of devices such as, for example, quantum point contacts (QPC), electron interferometers and quantum dots. To fabricate these gates, processing is usually performed on the 2DEG material, which is in many cases detrimental to its electron mobility. Here we propose an alternative process which does not require any processing of the 2DEG material other than for the ohmic contacts. This approach relies on processing a separate wafer that is then mechanically mounted on the 2DEG material in a flip-chip fashion. This technique proved successful to fabricate quantum point contacts on both GaAs/AlGaAs materials with both moderate and ultra-high electron mobility.Comment: 5 pages, 3 figure

    Interpersonal sensorimotor communication shapes intrapersonal coordination in a musical ensemble

    Get PDF
    Social behaviors rely on the coordination of multiple effectors within one’s own body as well as between the interacting bodies. However, little is known about how coupling at the interpersonal level impacts coordination among body parts at the intrapersonal level, especially in ecological, complex, situations. Here, we perturbed interpersonal sensorimotor communication in violin players of an orchestra and investigated how this impacted musicians’ intrapersonal movements coordination. More precisely, first section violinists were asked to turn their back to the conductor and to face the second section of violinists, who still faced the conductor. Motion capture of head and bow kinematics showed that altering the usual interpersonal coupling scheme increased intrapersonal coordination. Our perturbation also induced smaller yet more complex head movements, which spanned multiple, faster timescales that closely matched the metrical levels of the musical score. Importantly, perturbation differentially increased intrapersonal coordination across these timescales. We interpret this behavioral shift as a sensorimotor strategy that exploits periodical movements to effectively tune sensory processing in time and allows coping with the disruption in the interpersonal coupling scheme. As such, head movements, which are usually deemed to fulfill communicative functions, may possibly be adapted to help regulate own performance in time

    Optical extinction in a single layer of nanorods

    Full text link
    We demonstrate that almost 100 % of incident photons can interact with a monolayer of scatterers in a symmetrical environment. Nearly-perfect optical extinction through free-standing transparent nanorod arrays has been measured. The sharp spectral opacity window, in the form of a characteristic Fano resonance, arises from the coherent multiple scattering in the array. In addition, we show that nanorods made of absorbing material exhibit a 25-fold absorption enhancement per unit volume compared to unstructured thin film. These results open new perspectives for light management in high-Q, low volume dielectric nanostructures, with potential applications in optical systems, spectroscopy, and optomechanics

    Kink-induced transport and segregation in oscillated granular layers

    Get PDF
    We use experiments and molecular dynamics simulations of vertically oscillated granular layers to study horizontal particle segregation induced by a kink (a boundary between domains oscillating out of phase). Counter-rotating convection rolls carry the larger particles in a bidisperse layer along the granular surface to a kink, where they become trapped. The convection originates from avalanches that occur inside the layer, along the interface between solidified and fluidized grains. The position of a kink can be controlled by modulation of the container frequency, making possible systematic harvesting of the larger particles.Comment: 4 pages, 5 figures. to appear in Phys. Rev. Let
    • …
    corecore