9,504 research outputs found
Amorphous Vortex Glass Phase in Strongly Disordered Superconductors
We introduce a model describing vortices in strongly disordered
three-dimensional superconductors. The model focuses on the topological
defects, i.e., dislocation lines, in an elastic description of the vortex
lattice. The model is studied using Monte Carlo simulations, revealing a glass
phase at low temperatures, separated by a continuous phase transition to the
high temperature resistive vortex liquid phase. The critical exponents nu ~ 1.3
and eta ~ -0.4 characterizing the transition are obtained from finite size
scaling.Comment: 4 pages, 4 figure
Topological Structure of a Vortex in Fulde-Ferrell-Larkin-Ovchinnikov State
We find theoretically that the vortex core in the
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state is quite different from the
ordinary core by a simple topological reason. The intersection point of a
vortex and nodal plane of the FFLO state empties the excess spins. This leads
to observable consequences in the spatial structure of the spontaneous
magnetization. We analyze this topological structure based on the low lying
excitation spectrum by solving microscopic Bogoliubov-de Gennes equation to
clarify its physical origin.Comment: 4 pages, 4 figure
Chromomagnetic instability in two-flavor quark matter at nonzero temperature
We calculate the effective potential of the 2SC/g2SC phases including vector
condensates () and study the gluonic phase and the
single plane-wave Larkin-Ovchinnikov-Fulde-Ferrell state at nonzero
temperature. Our analysis is performed within the framework of the gauged
Nambu--Jona-Lasinio model. We compute potential curvatures with respect to the
vector condensates and investigate the temperature dependence of the Meissner
masses squared of gluons of color 4--7 and 8 in the neutral 2SC/g2SC phases.
The phase diagram is presented in the plane of temperature and coupling
strength. The unstable regions for gluons 4--7 and 8 are mapped out on the
phase diagram. We find that, apart from the case of strong coupling, the
2SC/g2SC phases at low temperatures are unstable against the vector
condensation until the temperature reaches tens of MeV.Comment: 10 pages, 10 figures, revisions to text, published in Phys. Rev.
Neutral Larkin--Ovchinnikov--Fulde--Ferrell state and chromomagnetic instability in two-flavor dense QCD
In two-flavor dense quark matter, we describe the dynamics in the single
plane wave Larkin--Ovchinnikov--Fulde--Ferrell (LOFF) state satisfying the
color and electric neutrality conditions. We find that because the neutral LOFF
state itself suffers from a chromomagnetic instability in the whole region
where it coexists with the (gapped/gapless) two-flavor superconducting
(2SC/g2SC) phases, it cannot cure this instability in those phases. This is
unlike the recently revealed gluonic phase which seems to be able to resolve
this problem.Comment: Revtex4, 5 pages, 3 figures, clarifications added, to appear in
Phys.Rev.Let
Phase diagram of asymmetric Fermi gas across Feshbach resonance
We study the phase diagram of the dilute two-component Fermi gas at zero
temperature as a function of the polarization and coupling strength. We map out
the detailed phase separations between superfluid and normal states near the
Feshbach resonance. We show that there are three different coexistence of
superfluid and normal phases corresponding to phase separated states between:
(I) the partially polarized superfluid and the fully polarized normal phases,
(II) the unpolarized superfluid and the fully polarized normal phases and (III)
the unpolarized superfluid and the partially polarized normal phases from
strong-coupling BEC side to weak-coupling BCS side. For pairing between two
species, we found this phase separation regime gets wider and moves toward the
BEC side for the majority species are heavier but shifts to BCS side and
becomes narrow if they are lighter.Comment: 4 pages, 3 figures. Submitted to LT25 on June 200
Superfluid phases of triplet pairing and neutrino emission from neutron stars
Neutrino energy losses through neutral weak currents in the triplet-spin
superfluid neutron liquid are studied for the case of condensate involving
several magnetic quantum numbers. Low-energy excitations of the multicomponent
condensate in the timelike domain of the energy and momentum are analyzed.
Along with the well-known excitations in the form of broken Cooper pairs, the
theoretical analysis predicts the existence of collective waves of spin density
at very low energy. Because of a rather small excitation energy of spin waves,
their decay leads to a substantial neutrino emission at the lowest
temperatures, when all other mechanisms of neutrino energy loss are killed by a
superfluidity. Neutrino energy losses caused by the pair recombination and
spin-wave decays are examined in all of the multicomponent phases that might
represent the ground state of the condensate, according to modern theories, and
for the case when a phase transition occurs in the condensate at some
temperature. Our estimate predicts a sharp increase in the neutrino energy
losses followed by a decrease, along with a decrease in the temperature, that
takes place more rapidly than it would without the phase transition. We
demonstrate the important role of the neutrino radiation caused by the decay of
spin waves in the cooling of neutron stars.Comment: 24 pages, 5 figure
Low-lying excitations around a single vortex in a d-wave superconductor
A full quantum-mechanical treatment of the Bogoliubov-de Gennes equation for
a single vortex in a d-wave superconductor is presented. First, we find
low-energy states extended in four diagonal directions, which have no
counterpart in a vortex of s-wave superconductors. The four-fold symmetry is
due to 'quantum effect', which is enhanced when is small. Second,
for , a peak with a large energy gap is
found in the density of states, which is due to the formation of the lowest
bound states.Comment: 7pages, Revte
Magnetoelastic Effects in Iron Telluride
Iron telluride doped lightly with selenium is known to undergo a first order
magneto-structural transition before turning superconducting at higher doping.
We study the effects of magneto-elastic couplings on this transition using
symmetry considerations. We find that the magnetic order parameters are coupled
to the uniform monoclinic strain of the unit cell with one iron per cell, as
well as to the phonons at high symmetry points of the Brillouin zone. In the
magnetic phase the former gives rise to monoclinic distortion while the latter
induces dimerization of the ferromagnetic iron chains due to alternate
lengthening and shortening of the nearest-neighbour iron-iron bonds. We compare
this system with the iron arsenides and propose a microscopic magneto-elastic
Hamiltonian which is relevant for all the iron based superconductors. We argue
that this describes electron-lattice coupling in a system where
electron-electron interaction is crucial.Comment: 5 pages, 2 figure
Transient heat and mass transfer analysis of supercritical cryogenic storage systems with spherical static heaters Final report
Transient heat and mass transfer analysis of supercritical cryogenic storage systems with spherical static heaters by computer progra
Radio Frequency Spectroscopy of Trapped Fermi Gases with Population Imbalance
Motivated by recent experiments, we address, in a fully self consistent
fashion, the behavior and evolution of radio frequency (RF) spectra as
temperature and polarization are varied in population imbalanced Fermi gases.
We discuss a series of scenarios for the experimentally observed zero
temperature pseudogap phase and show how present and future RF experiments may
help in its elucidation. We conclude that the MIT experiments at the lowest
may well reflect ground state properties, but take issue with their claim that
the pairing gap survives up to temperatures of the order of the degeneracy
temperature at unitarity.Comment: 4 page, 3 figures, submitted to PRA Rapi
- …
