9,213 research outputs found
Magnetoconductivity of low-dimensional disordered conductors at the onset of the superconducting transition
Magnetoconductivity of the disordered two- and three-dimensional
superconductors is addressed at the onset of superconducting transition. In
this regime transport is dominated by the fluctuation effects and we account
for the interaction corrections coming from the Cooper channel. In contrast to
many previous studies we consider strong magnetic fields and various
temperature regimes, which allow to resolve the existing discrepancies with the
experiments. Specifically, we find saturation of the fluctuations induced
magneto-conductivity for both two- and three-dimensional superconductors at
already moderate magnetic fields and discuss possible dimensional crossover at
the immediate vicinity of the critical temperature. The surprising observation
is that closer to the transition temperature weaker magnetic field provides the
saturation. It is remarkable also that interaction correction to
magnetoconductivity coming from the Cooper channel, and specifically the so
called Maki-Thompson contribution, remains to be important even away from the
critical region.Comment: 4 pages, 1 figur
Economic Impacts of Red Tide Events on Restaurant Sales
The economic impact of red tide events were examined for three Southwest Florida waterfront restaurants. Daily gross sales from January 1996 through September were analyzed using a multiple regression time series model to examine whether the presence of a red tide, as measured within three and six miles of the beach, reduced sales revenues. Preliminary results indicate that red tide blooms closer to shore had a significantly large negative influence on sales revenues across restaurant locations.Agribusiness,
A constrained random-force model for weakly bending semiflexible polymers
The random-force (Larkin) model of a directed elastic string subject to
quenched random forces in the transverse directions has been a paradigm in the
statistical physics of disordered systems. In this brief note, we investigate a
modified version of the above model where the total transverse force along the
polymer contour and the related total torque, in each realization of disorder,
vanish. We discuss the merits of adding these constraints and show that they
leave the qualitative behavior in the strong stretching regime unchanged, but
they reduce the effects of the random force by significant numerical
prefactors. We also show that a transverse random force effectively makes the
filament softer to compression by inducing undulations. We calculate the
related linear compression coefficient in both the usual and the constrained
random force model.Comment: 4 pages, 1 figure, accepted for publication in PR
Suppression or enhancement of the Fulde-Ferrell-Larkin-Ovchinnikov order in a one-dimensional optical lattice with particle correlated tunnelling
We study through controlled numerical simulation the ground state properties
of spin-polarized strongly interacting fermi gas in an anisotropic optical
lattice, which is described by an effective one-dimensional general Hubbard
model with particle correlated hopping rate. We show that the
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) type of state, while enhanced by a
negative correlated hopping rate, can be completely suppressed by positive
particle correlated hopping, yielding to an unusual magnetic phase even for
particles with on-site attractive interaction We also find several different
phase separation patterns for these atoms in an inhomogeneous harmonic trap,
depending on the correlated hopping rate
FIRM-LEVEL HEDONIC ANALYSIS OF U.S. PRODUCED SURIMI: IMPLICATIONS FOR PROCESSORS AND RESOURCE MANAGERS
Firm-level data on U.S. produced surimi, the only seafood product that is graded on the objective measurement of several quality characteristics, are used to estimate the effect of production variables (e.g., hours between harvest and processing) and policy variables (e.g., fishing seasons) on product characteristics. Transactions data are then used to estimate hedonic equations and derive implicit prices for each characteristic of surimi used to produce seafood analogs and traditional products in the U.S. and Japanese markets, respectively. Implicit prices are also estimated for surimi grade, production location (onshore, at-sea), and production date. Results indicate that several factors (including species) significantly affect surimi characteristics. Color and gel strength have the largest price impact, and market conditions alter the relative prices associated with improving certain characteristics. Overall results demonstrate that management decisions that affect fish quality—and, therefore, processed product quality and price—directly affect the wholesale value of the fishery.Resource /Energy Economics and Policy,
Nonequilibrium mesoscopic conductance fluctuations
We investigate the amplitude of mesoscopic fluctuations of the differential
conductance of a metallic wire at arbitrary bias voltage V. For non-interacting
electrons, the variance increases with V. The asymptotic large-V
behavior is \sim V/V_c (where eV_c=D/L^2 is the Thouless energy),
in agreement with the earlier prediction by Larkin and Khmelnitskii. We find,
however, that this asymptotics has a very small numerical prefactor and sets in
at very large V/V_c only, which strongly complicates its experimental
observation. This high-voltage behavior is preceded by a crossover regime,
V/V_c \lesssim 30, where the conductance variance increases by a factor \sim 3
as compared to its value in the regime of universal conductance fluctuations
(i.e., at V->0). We further analyze the effect of dephasing due to the
electron-electron scattering on at high voltages. With the Coulomb
interaction taken into account, the amplitude of conductance fluctuations
becomes a non-monotonic function of V. Specifically, drops as 1/V
for voltages V >> gV_c, where g is the dimensionless conductance. In this
regime, the conductance fluctuations are dominated by quantum-coherent regions
of the wire adjacent to the reservoirs.Comment: 14 pages, 4 figures. Fig.2 and one more appendix added, accepted for
publication in PR
Conventional and charge six superfluids from melting hexagonal Fulde-Ferrell-Larkin-Ovchinnikov phases in two dimensions
We consider defect mediated melting of Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) and pair density wave (PDW) phases in two dimensions. Examining
mean-field ground states in which the spatial oscillations of the FFLO/PDW
superfluid order parameter exhibit hexagonal lattice symmetry, we find that
thermal melting leads to a variety of novel phases. We find that a spatially
homogeneous charge six superfluid can arise from melting a hexagonal
vortex-anitvortex lattice FFLO/PDW phase. The charge six superfluid has an
order parameter corresponding to a bound state of six fermions. We further find
that a hexagonal vortex-free FFLO/PDW phase can melt to yield a conventional
(charge two) homogeneous superfluid. A key role is played by topological
defects that combine fractional vortices of the superfluid order and fractional
dislocations of the lattice order.Comment: 8 pages, 3 figure
Thermal conductivity in a mixed state of a superconductor at low magnetic fields
We evaluate accurate low-field/low-temperature asymptotics of the thermal
conductivity perpendicular to magnetic field for one-band and two-band s-wave
superconductors using Keldysh-Usadel formalism. We show that heat transport in
this regime is limited by tunneling of quasiparticles between adjacent vortices
across a number of local points and therefore widely-used approximation of
averaging over circular unit cell is not valid. In the single-band case, we
obtain parameter-free analytical solution which provides theoretical lower
limit for heat transport in the mixed state. In the two-band case, we show that
heat transport is controlled by the ratio of gaps and diffusion constants in
different bands. Presence of a weaker second band strongly enhances the thermal
conductivity at low fieldsComment: 7 pages, 1 figure, discussion of the clean case and discussion of
experiment adde
Detecting the breached pair phase in a polarized ultracold Fermi gas
We propose a method for the experimental detection of a new quantum phase,
the breached pair state, in a strongly interacting ultracold Fermi gas with
population imbalance. We show that through the time-of-flight Raman imaging,
the presence of such a phase can be unambiguously determined with a measurement
of the momentum-space phase separation of the minority spin component. To guide
the experimental efforts, the momentum-space density profiles are calculated
under typical experimental conditions.Comment: 4 pages, 3 figures, replaced with the published versio
- …