5 research outputs found

    The Importance of MDP Priming, Silica Blasting or Glazing on the Retention Force of Y-TZP Copings to Varying Geometry Tooth Abutments

    No full text
    To evaluate the influence of the convergence angle of tooth preparations and abutments height and several surface treatments for zirconia copings through the tensile retention test. 120 crown preparations were made in Nema G10 with the maxillary first molar anatomy. In total, 60 abutments of 5 mm height were divided into two groups of 6° and 20° convergence angles of tooth preparations, and 60 abutments with a convergence angle of tooth preparations of 12° were divided into groups of 4 and 6 mm heights. Three surface treatments used were MDP-primer (10-Methacryloyloxydecyl dihydrogen phosphate), glazing or silica blasting. The abutments were scanned to make zirconia copings (3Y-TZP–Yttria-Stabilized Tetragonal Zirconia Polycrystals, Vita In-Ceram YZ). After cementation, the mechanical cycling (2 × 106 cycles, 3 Hz, 100 N) was performed to aging. After cycling, the copings were tested in tensile (1 kN load cell; 0.5 mm/s speed). Both abutments support base and copings were embedded in acrylic resin with the aid of a device that maintained the long axis perpendicular to the horizontal plane. Data were analyzed with the two-way ANOVA and Tukey test (95%). ANOVA revealed that the convergence angle influenced the tensile retention (p = 0.0232), but the abutments height showed no statistically significant difference (p = 0.086). The MDP-primer and silica blasting showed higher retention forces in the specimens with height variations. For bonded zirconia crowns, the retention force provided by high convergence angle preparation is critical and cannot be improved by surface treatments. For short and long crown preparations, MDP-based Primers or Silica blasting are advisable to aid restoration longevity

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    No full text
    International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora
    corecore