74 research outputs found

    Efeitos da exposição à amônia em células astrogliais e neuronais : mecanismos protetores do resveratrol e do ácido lipoico

    Get PDF
    Os astrócitos são células conhecidas por sua capacidade dinâmica e versatilidade, participando não somente da manutenção da homeostase cerebral em condições fisiológicas, mas também respondendo em condições patológicas, como por exemplo, na encefalopatia hepática (EH). Esta patologia neurológica está associada principalmente à hiperamonemia, decorrente de uma falência hepática aguda ou crônica. A toxicidade da amônia no sistema nervoso central (SNC) é mediada por uma série de alterações celulares e metabólicas, principalmente nas células astrogliais. Nesse sentido, a busca por moléculas com potencial terapêutico no SNC é extremamente relevante. Trabalhos do nosso grupo mostraram que o resveratrol e o ácido lipoico, duas moléculas conhecidas pelos seus efeitos antioxidantes, modulam importantes funções gliais, relacionadas principalmente ao metabolismo glutamatérgico, à defesa antioxidante e à resposta inflamatória. Neste sentido, esta tese teve como objetivo avaliar os efeitos do resveratrol e do ácido lipoico em células astrogliais e neuronais expostas à amônia, assim como seus possíveis mecanismos protetores. Primeiramente, nós observamos que o resveratrol e o ácido lipoico foram capazes de prevenir as alterações induzidas pela amônia em células astrogliais C6, sobre parâmetros do metabolismo glutamatérgico, dentre os quais podemos destacar a captação de glutamato, a atividade da enzima glutamina sintetase (GS) e o conteúdo de glutationa (GSH). Além disso, o ácido lipoico também exerceu um efeito antiinflamatório nestas células, prevenindo a liberação de citocinas pró-inflamatórias (TNFα, IL- 1β, IL-6, IL-18) e da proteína S100B, através da diminuição da ativação do fator de transcrição NFκB. Nós também verificamos que a maioria dos efeitos protetores do resveratrol e do ácido lipoico foram dependentes da heme oxigenase 1 (HO1), uma enzima associada com a defesa celular em situações de estresse. Por fim, foram avaliados os efeitos do resveratrol e do ácido lipoico sobre células neuronais expostas à amônia. Novamente, ambos apresentaram um efeito benéfico, prevenindo tanto o aumento da produção de espécies reativas de oxigênio (ERO) quanto a diminuição do conteúdo de GSH induzidos pela amônia. Nas células neuronais, a proteína HO1 também participou dos efeitos protetores do resveratrol e do ácido lipoico. Em conjunto, esses resultados nos mostram que o resveratrol e o ácido lipoico são capazes de modular positivamente o funcionamento tanto de células astrogliais quanto de células neuronais em situações de hiperamonemia, compartilhando também alguns mecanismos de ação, como a indução da HO1. Este estudo in vitro sugere que o resveratrol e o ácido lipoico são potenciais agentes terapêuticos para doenças do SNC, as quais envolvam produção de espécies reativas e resposta inflamatória, como a EH.Astrocytes are dynamic and versatile cells which participate in the maintenance of brain homeostasis in physiological conditions and also in response to pathological conditions, such as hepatic encephalopathy. This neurological disease is mainly associated with hyperamonnemia, resulting from acute or chronic liver failure. Ammonia toxicity in the central nervous system (CNS) is mediated by several cellular and metabolic alterations, primarily in astroglial cells. In this sense, the search for molecules with therapeutical potential for CNS becomes highly relevant. Our group has shown that resveratrol and lipoic acid, two molecules known for their antioxidant activities, are able to modulate important glial functions mainly related to glutamate metabolism, antioxidant defense and inflammatory response. In this sense, this study aimed to evaluate the effects of resveratrol and lipoic acid in astroglial and neuronal cells exposed to ammonia, as well as their possible protective mechanisms. Firstly, we observed that resveratrol and lipoic acid were able to prevent ammonia-induced alterations in C6 astroglial cells functioning, such as glutamate uptake, glutamine synthetase (GS) activity and intracellular GSH content. Moreover, lipoic acid also exerted an anti-inflammatory effect in C6 astroglial cells, preventing the ammonia-stimulated release of pro-inflammatory cytokines (TNF, IL-1β, IL-6, IL-18) and S100B protein, by decreasing the activation of the transcription factor NFκB. We also verified that the most protective effects of resveratrol and lipoic acid involved the heme oxygenase 1 (HO1), an enzyme associated with protection against stressful conditions. Finally, we evaluated the effects of resveratrol and lipoic acid on neuronal cells exposed to ammonia. Again, both showed beneficial roles, preventing the increase of reactive oxygen species (ROS) and decrease of GSH content induced by ammonia. In neuronal cells, HO1 also mediated the protective effects of resveratrol and lipoic acid. Taken together, these results show that resveratrol and lipoic acid are able to positively modulate the functioning of both astroglial and neuronal cells in hyperamonemmia conditions, sharing some mechanisms of action, such as HO1. This study in vitro suggests that resveratrol and lipoic acid may represent potential therapeutic agents for CNS, during oxidative and inflammatory damages, as the induced by ammonia

    COVID-19 and hyperammonemia : potential interplay between liver and brain dysfunctions

    Get PDF
    Although COVID-19 affects the respiratory system, extrapulmonary manifestations frequently occur, including encephalopathy and liver damage. Here, we want to call attention to a possible connection between liver and brain dysfunctions, in which ammonia can play a role targeting astrocytes. Importantly, astrocyte dysfunction can produce future and/or long-term neurological consequences

    SARS-CoV-2-induced amyloidgenesis : not one, but three hypotheses for cerebral COVID-19 outcomes

    Get PDF
    The main neuropathological feature of Alzheimer’s disease (AD) is extracellular amyloid deposition in senile plaques, resulting from an imbalance between the production and clearance of amyloid beta peptides. Amyloid deposition is also found around cerebral blood vessels, termed cerebral amyloid angiopathy (CAA), in 90% of AD cases. Although the relationship between these two amyloid disorders is obvious, this does not make CAA a characteristic of AD, as 40% of the non-demented population presents this derangement. AD is predominantly sporadic; therefore, many factors contribute to its genesis. Herein, the starting point for discussion is the COVID-19 pandemic that we are experiencing and how SARS-CoV-2 may be able to, both directly and indirectly, contribute to CAA, with consequences for the outcome and extent of the disease. We highlight the role of astrocytes and endothelial cells in the process of amyloidgenesis, as well as the role of other amyloidgenic proteins, such as fibrinogen and serum amyloid A protein, in addition to the neuronal amyloid precursor protein. We discuss three independent hypotheses that complement each other to explain the cerebrovascular amyloidgenesis that may underlie long-term COVID-19 and new cases of dementia

    Impact of SARS-CoV-2 infection during pregnancy on postnatal brain development : the potential role of glial cells

    Get PDF
    Glial cells are crucial for maintaining central nervous system (CNS) homeostasis. They actively participate in immune responses, as well as form functional barriers, such as blood-brain barrier (BBB), which restrict the entry of pathogens and inflammatory mediators into the CNS. In general, viral infections during the gestational period can alter the embryonic and fetal environment, and the related inflammatory response may affect neurodevelopment and lead to behavioral dysfunction during later stage of life, as highlighted by our group for Zika virus infection. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) induces a cytokine storm and, during pregnancy, may be related to a more severe form of the coronavirus disease-19 (COVID-19) and also to higher preterm birth rates. SARS-CoV-2 can also affect the CNS by inducing neurochemical remodeling in neural cells, which can compromise neuronal plasticity and synaptic function. However, the impact of SARS-CoV-2 infection during pregnancy on postnatal CNS, including brain development during childhood and adulthood, remains undetermined. Our group has recently highlighted the impact of COVID-19 on the expression of molecular markers associated with neuropsychiatric disorders, which are strongly related to the inflammatory response. Thus, based on these relationships, we discussed the impact of SARS-CoV-2 infection either during pregnancy or in critical periods of neurodevelopment as a risk factor for neurological consequences in the offspring later in life, focusing on the potential role of glial cells. Thus, it is important to consider future and long-term public health concerns associated with SARS-CoV-2 infection during pregnancy

    COVID-19 impacts the expression of molecular markers associated with neuropsychiatric disorders

    Get PDF
    Coronavirus disease 2019 (COVID-19) was initially characterized due to its impacts on the respiratory system; however, many recent studies have indicated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) significantly affects the brain. COVID-19 can cause neurological complications, probably caused by the induction of a cytokine storm, since there is no evidence of neurotropism by SARS-CoV-2. In line with this, the COVID-19 outbreak could accelerate the progression or affect the clinical outcomes of neuropsychiatric conditions. Thus, we analyzed differential gene expression datasets for clinical samples of COVID-19 patients and identified 171 genes that are associated with the pathophysiology of the following neuropsychiatric disorders: alcohol dependence, autism, bipolar disorder, depression, panic disorder, schizophrenia, and sleep disorder. Several of the genes identified are associated with causing some of these conditions (classified as elite genes). Among these elite genes, 9 were found for schizophrenia, 6 for autism, 3 for depression/major depressive disorder, and 2 for alcohol dependence. The patients with the neuropsychiatric conditions associated with the genes identified may require special attention as COVID-19 can deteriorate or accelerate neurochemical dysfunctions, thereby aggravating clinical outcomes

    Myelin disruption, neuroinflammation, and oxidative stress induced by sulfite in the striatum of rats are mitigated by the pan-PPAR agonist bezafibrate

    Get PDF
    Sulfite predominantly accumulates in the brain of patients with isolated sulfite oxidase (ISOD) and molybdenum cofactor (MoCD) deficiencies. Patients present with severe neurological symptoms and basal ganglia alterations, the pathophysiology of which is not fully established. Therapies are ineffective. To elucidate the pathomechanisms of ISOD and MoCD, we investigated the effects of intrastriatal administration of sulfite on myelin structure, neuroinflammation, and oxidative stress in rat striatum. Sulfite administration decreased FluoromyelinTM and myelin basic protein staining, suggesting myelin abnormalities. Sulfite also increased the staining of NG2, a protein marker of oligodendrocyte progenitor cells. In line with this, sulfite also reduced the viability of MO3.13 cells, which express oligodendroglial markers. Furthermore, sulfite altered the expression of interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-10 (IL-10), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and heme oxygenase-1 (HO-1), indicating neuroinflammation and redox homeostasis disturbances. Iba1 staining, another marker of neuroinflammation, was also increased by sulfite. These data suggest that myelin changes and neuroinflammation induced by sulfite contribute to the pathophysiology of ISOD and MoCD. Notably, post-treatment with bezafibrate (BEZ), a pan-PPAR agonist, mitigated alterations in myelin markers and Iba1 staining, and IL-1β, IL-6, iNOS and HO-1 expression in the striatum. MO3.13 cell viability decrease was further prevented. Moreover, pretreatment with BEZ also attenuated some effects. These findings show the modulation of PPAR as a potential opportunity for therapeutic intervention in these disorders

    Early effects of LPS-induced neuroinflammation on the rat hippocampal glycolytic pathway

    Get PDF
    Neuroinflammation is a common feature during the development of neurological disorders and neurodegenerative diseases, where glial cells, such as microglia and astrocytes, play key roles in the activation and maintenance of inflammatory responses in the central nervous system. Neuroinflammation is now known to involve a neurometabolic shift, in addition to an increase in energy consumption. We used two approaches (in vivo and ex vivo) to evaluate the effects of lipopolysaccharide (LPS)-induced neuroinflammation on neurometabolic reprogramming, and on the modulation of the glycolytic pathway during the neuroinflammatory response. For this, we investigated inflammatory cytokines and receptors in the rat hippocampus, as well as markers of glial reactivity. Mitochondrial respirometry and the glycolytic pathway were evaluated by multiple parameters, including enzymatic activity, gene expression and regulation by protein kinases. Metabolic (e.g., metformin, 3PO, oxamic acid, fluorocitrate) and inflammatory (e.g., minocycline, MCC950, arundic acid) inhibitors were used in ex vivo hippocampal slices. The induction of early inflammatory changes by LPS (both in vivo and ex vivo) enhanced glycolytic parameters, such as glucose uptake, PFK1 activity and lactate release. This increased glucose consumption was independent of the energy expenditure for glutamate uptake, which was in fact diverted for the maintenance of the immune response. Accordingly, inhibitors of the glycolytic pathway and Krebs cycle reverted neuroinflammation (reducing IL-1β and S100B) and the changes in glycolytic parameters induced by LPS in acute hippocampal slices. Moreover, the inhibition of S100B, a protein predominantly synthesized and secreted by astrocytes, inhibition of microglia activation and abrogation of NLRP3 inflammasome assembly confirmed the role of neuroinflammation in the upregulation of glycolysis in the hippocampus. Our data indicate a neurometabolic glycolytic shift, induced by inflammatory activation, as well as a central and integrative role of astrocytes, and suggest that interference in the control of neurometabolism may be a promising strategy for downregulating neuroinflammation and consequently for diminishing negative neurological outcomes

    Why antidiabetic drugs are potentially neuroprotective during the Sars-CoV-2 pandemic: The focus on astroglial UPR and calcium-binding proteins

    Get PDF
    We are living in a terrifying pandemic caused by Sars-CoV-2, in which patients with diabetes mellitus have, from the beginning, been identified as having a high risk of hospitalization and mortality. This viral disease is not limited to the respiratory system, but also affects, among other organs, the central nervous system. Furthermore, we already know that individuals with diabetes mellitus exhibit signs of astrocyte dysfunction and are more likely to develop cognitive deficits and even dementia. It is now being realized that COVID-19 incurs long-term effects and that those infected can develop several neurological and psychiatric manifestations. As this virus seriously compromises cell metabolism by triggering several mechanisms leading to the unfolded protein response (UPR), which involves endoplasmic reticulum Ca2+ depletion, we review here the basis involved in this response that are intimately associated with the development of neurodegenerative diseases. The discussion aims to highlight two aspects—the role of calcium-binding proteins and the role of astrocytes, glial cells that integrate energy metabolism with neurotransmission and with neuroinflammation. Among the proteins discussed are calpain, calcineurin, and sorcin. These proteins are emphasized as markers of the UPR and are potential therapeutic targets. Finally, we discuss the role of drugs widely prescribed to patients with diabetes mellitus, such as statins, metformin, and calcium channel blockers. The review assesses potential neuroprotection mechanisms, focusing on the UPR and the restoration of reticular Ca2+ homeostasis, based on both clinical and experimental data
    corecore