6 research outputs found

    Three loop MSbar renormalization of QED in the 't~Hooft-Veltman gauge

    Full text link
    Quantum electrodynamics (QED) fixed in the 't~Hooft-Veltman gauge is renormalized to three loops in the MSbar scheme. The beta-functions and anomalous dimensions are computed as functions of the usual QED coupling and the additional coupling, xi, which is introduced as part of the nonlinear gauge fixing condition. Similar to the maximal abelian gauge of quantum chromodynamics, the renormalization of the gauge parameter is singular.Comment: 8 latex page

    Two-loop three-gluon vertex in zero-momentum limit

    Get PDF
    The two-loop three-gluon vertex is calculated in an arbitrary covariant gauge, in the limit when one of the external momenta vanishes. The differential Ward-Slavnov-Taylor (WST) identity related to this limit is discussed, and the relevant results for the ghost-gluon vertex and two-point functions are obtained. Together with the differential WST identity, they provide another independent way for calculating the three-gluon vertex. The renormalization of the results obtained is also presented.Comment: 22 pages, LaTeX, including 4 figures, uses eps

    Integrability and Transcendentality

    Get PDF
    We derive the two-loop Bethe ansatz for the sl(2) twist operator sector of N=4 gauge theory directly from the field theory. We then analyze a recently proposed perturbative asymptotic all-loop Bethe ansatz in the limit of large spacetime spin at large but finite twist, and find a novel all-loop scaling function. This function obeys the Kotikov-Lipatov transcendentality principle and does not depend on the twist. Under the assumption that one may extrapolate back to leading twist, our result yields an all-loop prediction for the large-spin anomalous dimensions of twist-two operators. The latter also appears as an undetermined function in a recent conjecture of Bern, Dixon and Smirnov for the all-loop structure of the maximally helicity violating (MHV) n-point gluon amplitudes of N=4 gauge theory. This potentially establishes a direct link between the worldsheet and the spacetime S-matrix approach. A further assumption for the validity of our prediction is that perturbative BMN (Berenstein-Maldacena-Nastase) scaling does not break down at four loops, or beyond. We also discuss how the result gets modified if BMN scaling does break down. Finally, we show that our result qualitatively agrees at strong coupling with a prediction of string theory.Comment: 45 pages LaTeX, 3 postscript figures. v2: Chapter on BMN scaling and transcendentality added. v3: version accepted for publication in JSTA

    Top Quark Contribution to Hadronic Decays of the Z-Boson at Alpha_s^2 in QCD

    Full text link
    We evaluate the effect of a virtual top quark on the coefficient of αs2\alpha_{s}^{2} in the decay rates Γ(Z→hadrons)\Gamma(Z \rightarrow {\rm hadrons}) and Γ(Z→bb‾)\Gamma(Z \rightarrow b\overline{b} ). We treat the dependence on the top quark mass exactly instead of using a large mass expansion. The present work completes the evaluation of the αs2\alpha_{s}^{2} contributions to these quantities. The calculation uses both the MS‾\overline{\rm MS} and Collins-Wilczek-Zee renormalization prescriptions. The results can be applied to the hadronic decays of the τ\tau-lepton.Comment: 10 pages, REVTeX 3.0 with 4 postscript figures compressed with uufiles, University of Oregon preprint OITS 54

    Perturbative QCD Calculations of Total Cross Sections and Decay Widths in Hard Inclusive Processes

    Get PDF
    A summary of the current understanding of methods of analytical higher order perturbative computations of total cross sections and decay widths in Quantum Chromodynamics is presented. As examples, the total cross section in electron positron annihilation, the hadronic decay rates of the tau lepton and Higgs boson up to O(\alpha_s^2) and O(\alpha_s^3) are considered. The evaluation of the four-loop QED \beta - function at an intermediate step of the calculation is briefly described. The problem of renormalization group ambiguity of perturbative results is considered and some of the existing prescriptions are discussed. The problem of estimation of theoretical uncertainty in perturbative calculations is briefly discussed.Comment: 83 pages, LaTeX, Reviews of Modern Physics style, 14 figures plus figural equations (not included). Hard copy available upon request at [email protected]. To be published in Reviews of Modern Physic
    corecore