13 research outputs found

    Living without Oxygen: Anoxia-Responsive Gene Expression and Regulation

    Get PDF
    Many species of marine mollusks demonstrate exceptional capacities for long term survival without oxygen. Analysis of gene expression under anoxic conditions, including the subsequent translational responses, allows examination of the functional mechanisms that support and regulate natural anaerobiosis and permit noninjurious transitions between aerobic and anoxic states. Identification of stress-specific gene expression can provide important insights into the metabolic adaptations that are needed for anoxia tolerance, with potential applications to anoxia-intolerant systems. Various methods are available to do this, including high throughput microarray screening and construction and screening of cDNA libraries. Anoxia-responsive genes have been identified in mollusks; some have known functions in other organisms but were not previously linked with anoxia survival. In other cases, completely novel anoxia-responsive genes have been discovered, some that show known motifs or domains that hint at function. Selected genes are expressed at different times over an anoxia-recovery time course with their transcription and translation being actively regulated to ensure protein expression at the optimal time. An examination of transcript status over the course of anoxia exposure and subsequent aerobic recovery identifies genes, and the proteins that they encode, that enhance cell survival under oxygen-limited conditions. Analysis of data generated from non-mainstream model systems allows for insight into the response by cells to anoxia stress

    The flavoheme reductase Ncb5or protects cells against endoplasmic reticulum stress-induced lipotoxicity[S]

    No full text
    NCB5OR is a novel flavoheme reductase with a cytochrome b5-like domain at the N-terminus and a cytochrome b5 reductase-like domain at the C terminus. Ncb5or knock-out mice develop insulin deficient diabetes and loss of white adipose tissue. Ncb5or−/− mice have impairment of Δ9 fatty acid desaturation with elevated ratios of palmitate to palmitoleate and stearate to oleate. In this study we assess the role of the endoplasmic reticulum (ER) stress response in mediating lipotoxicity in Ncb5or−/− mice. The ER stress response was assessed by induction of BiP, ATF3, ATF6, XBP-1, and C/EBP homologous protein (CHOP). Exposure to palmitate, but not oleate or mixtures of oleate and palmitate induced these markers of ER stress to a much greater extent in Ncb5or−/− hepatocytes than in wild-type cells. In contrast, Ncb5or−/− and Ncb5or+/+ hepatocytes were equally sensitive to ER stress imposed by increasing concentrations of tunicamycin. In order to assess the role of ER stress in vivo, we prepared mice that lack both NCB5OR and CHOP, a proapoptotic transcription factor important in the ER stress response. Onset of hyperglycemia in the Chop−/−;Ncb5or−/− mice was delayed two weeks beyond that observed in Chop+/+;Ncb5or−/− mice. Taken together these results suggest that ER stress plays a critical role in palmitate-induced lipotoxicity both in vitro and in vivo

    The reductase NCB5OR is responsive to the redox status in β-cells and is not involved in the ER stress response

    No full text
    The novel reductase NCB5OR (NADPH cytochrome b5 oxidoreductase) resides in the ER (endoplasmic reticulum) and may protect cells against ER stress. Levels of BiP (immunoglobulin heavy-chain-binding protein), CHOP (CCAAT/enhancer-binding protein homologous protein) and XBP-1 (X-box-binding protein-1) did not differ in WT (wild-type) and KO (Ncb5or-null) tissues or MEFs (mouse embryonic fibroblasts), and XBP-1 remained unspliced. MEFs treated with inducers of ER stress demonstrated no change in Ncb5or expression and expression of ER-stress-induced genes was not enhanced. Induction of ER stress in β-cell lines did not change Ncb5or expression or promoter activity. Transfection with Ncb5or-specific siRNA (small interfering RNA) yielded similar results. Microarray analysis of mRNA from islets and liver of WT and KO animals revealed no significant changes in ER-stress-response genes. Induction of oxidative stress in βTC3 cells did not alter Ncb5or mRNA levels or promoter activity. However, KO islets were more sensitive to streptozotocin when compared with WT islets. MEFs incubated with nitric oxide donors showed no difference in cell viability or levels of nitrite produced. No significant differences in mRNA expression of antioxidant enzymes were observed when comparing WT and KO tissues; however, microarray analysis of islets indicated slightly enhanced expression of some antioxidant enzymes in the KO islets. Short-term tBHQ (t-butylhydroquinone) treatment increased Ncb5or promoter activity, although longer incubation times yielded a dose-dependent decrease in activity. This response appears to be due to a consensus ARE (antioxidant-response element) present in the Ncb5or promoter. In summary, NCB5OR does not appear to be involved in ER stress, although it may be involved in maintaining or regulating the redox status in β-cells
    corecore