42 research outputs found
Recommended from our members
Intermediate Temperature Carbon - Carbon Composite Structures. CRADA Final Report
The objective of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC (the "Contractor") and Synterials, Inc. (the "Participant") was to demonstrate promising processing methods, which can lead to producing Carbon-Carbon Composites (CCC), with tensile and interlaminar properties comparable to those of organic matrix composites and environmental stability at 1200 F for long periods of time. The participant synthesized carbon-carbon composites with two different fiber coatings and three different matrices. Both parties evaluated the tensile and interlaminar properties of these materials and characterized the microstructure of the matrices and interfaces. It was found that fiber coatings of carbon and boron carbide provided the best environmental protection and resulted in composites with high tensile strength
Fracture Toughness of Thin Plates by the Double-Torsion Test Method
Double torsion testing can produce fracture toughness values without crack length measurement that are comparable to those measured via standardized techniques such as the chevron-notch, surface-crack-in-flexure and precracked beam if the appropriate geometry is employed, and the material does not exhibit increasing crack growth resistance. Results to date indicate that 8 2 are required if crack length is not considered in stress intensity calculations. At L/W = 2, the normalized crack length should be 0.35 80) nonlinear effects were encountered
Recommended from our members
Characterization of Min-K TE-1400 Thermal Insulation (Two-Year Gradient Stress Relaxation Testing Update)
Min-K 1400TE insulation material was characterized at Oak Ridge National Laboratory for use in structural applications under gradient temperature conditions. A previous report (ORNL/TM-2008/089) discusses the testing and results from the original three year duration of the project. This testing included compression testing to determine the effect of sample size and test specimen geometry on the compressive strength of Min-K, subsequent compression testing on cylindrical specimens to determine loading rates for stress relaxation testing, isothermal stress relaxation testing, and gradient stress relaxation testing. This report presents the results from the continuation of the gradient temperature stress relaxation testing and the resulting updated modeling
Recommended from our members
Characterization of Min-K TE-1400 Thermal Insulation
Min-K 1400TE insulation material was characterized at Oak Ridge National Laboratory for use in structural applications under gradient temperature conditions. Initial compression testing was performed at room temperature at various loading rates ranging between 5 and 500 psi/hour (≈35 and 3500 kPa/hour) to determine the effect of sample size and test specimen geometry on the compressive strength of Min-K. To determine the loading rates that would be used for stress relaxation testing, compression tests were next carried out at various levels followed by stress relaxation under constant strain at temperatures of 650, 850, and 900oC. Additional high temperature compression testing was performed with samples loaded at a rate of 53 psi/hour (365 kPa/hour) in three load steps of 50, 100 and 200 psi (345, 690, and 1380 kPa) with quick unload/load cycles between steps and followed by a hold period in load control (3 to 100 hours) to allow for sample creep. Testing was carried out at 190, 382, 813, and 850oC. Isothermal stress relaxation testing was performed at temperatures of 190, 382, 813, and 850oC and initial loads of 100 and 200 psi (690 and 1380 kPa). Gradient stress relaxation testing was intended to be performed at temperatures of 850/450oC and 450/190oC with initial loads of 100 or 200 psi (690 and 1380 kPa) performed under constant strain utilizing a twelve-step loading scheme with loading every half hour at a rate of 5.56% strain/hour
Recommended from our members
The Integrity of ACSR Full Tension Single-Stage Splice Connector at Higher Operation Temperature
Due to increases in power demand and limited investment in new infrastructure, existing overhead power transmission lines often need to operate at temperatures higher than those used for the original design criteria. This has led to the accelerated aging and degradation of splice connectors. It is manifested by the formation of hot-spots that have been revealed by infrared imaging during inspection. The implications of connector aging is two-fold: (1) significant increases in resistivity of the splice connector (i.e., less efficient transmission of electricity) and (2) significant reductions in the connector clamping strength, which could ultimately result in separation of the power transmission line at the joint. Therefore, the splice connector appears to be the weakest link in electric power transmission lines. This report presents a protocol for integrating analytical and experimental approaches to evaluate the integrity of full tension single-stage splice connector assemblies and the associated effective lifetime at high operating temperature
Paper Number GT2004-54254 SCREENING AND EVALUATION OF MATERIALS FOR MICROTURBINE RECUPERATORS
ABSTRACT The effects of stress, temperature and exposure to microturbine exhaust gases on the mechanical properties and corrosion resistance of candidate materials for microturbine recuperators were investigated. Results are presented for 347 stainless steel metallic foils after 500-hr exposure to temperatures between 620°C and 760°C at a tensile stress of 50 MPa. It was found that the material experienced accelerated attack at the highest temperature and that the corrosion products consisted of mixed oxides of iron and chromium. It was also found that exposure at the highest temperatures resulted in significant decrease in both tensile strength and ductility. ORNL's microturbine recuperator test facility, where the exposures were carried out, is also described. INTRODUCTION The challenging performance targets for the next generation of microturbines include fuel-to-electricity efficiency of 40%, capital costs less than $500/kW, NOx emissions reduced to single parts per million, several years of operation between overhauls, life of 40,000 hours and fuel flexibility One of the critical components in low-compression ratio microturbines is the recuperator, which is responsible for a significant fraction of the overall efficiency of the microturbin
On the elastic anisotropy of the entropy-stabilized oxide (Mg, Co, Ni, Cu, Zn)O compound
In this paper, we study the elastic properties of the entropy-stabilized oxide (Mg, Co, Ni, Cu, Zn)O using experimental and first principles techniques. Our measurements of the indentation modulus on grains with a wide range of crystallographic orientations of the entropy-stabilized oxide revealed a high degree of elastic isotropy at ambient conditions. First principles calculations predict mild elastic anisotropy for the paramagnetic structure, which decreases when the system is considered to be non-magnetic. When the antiferromagnetic state of CoO, CuO, and NiO is accounted for in the calculations, a slight increase in elastic anisotropy is observed, suggesting a coupling between magnetic ordering and the orientation dependent elastic properties. Furthermore, an examination of the local structure reveals that the isotropy is favored through local ionic distortions of Cu and Zn - due to their tendencies to form tenorite and wurtzite phases. The relationships between the elastic properties of the multicomponent oxide and those of its constituent binary oxides are reviewed. These insights open up new avenues for controlling isotropy for technological applications through tuning composition and structure in the entropy-stabilized oxide or the high-entropy compounds in general