6 research outputs found

    Pesticide use in banana plantations in Costa Rica-A review of environmental and human exposure, effects and potential risks

    Get PDF
    Biodiversity is declining on a global scale. Especially tropical ecosystems, containing most of the planetary biodiversity, are at risk. Agricultural monocrop systems contribute to this decline as they replace original hab-itats and depend on extensive use of synthetic pesticides that impact ecosystems. In this review we use large-scale banana production for export purposes in Costa Rica as an example for pesticide impacts, as it is in production for over a century and uses pesticides extensively for more than fifty years. We summarise the research on pesticide exposure, effects and risks for aquatic and terrestrial environment, as well as for human health. We show that exposure to pesticides is high and relatively well-studied for aquatic systems and humans, but hardly any data are available for the terrestrial compartment including adjacent non target ecosystems such as rainforest fragments. Ecological effects are demonstrated on an organismic level for various aquatic species and processes but are not available at the population and community level. For human health studies exposure evaluation is crucial and recognised effects include various types of cancer and neurobiological dysfunctions particularly in children. With the many synthetic pesticides involved in banana production, the focus on insecticides, revealing highest aquatic risks, and partly herbicides should be extended to fungicides, which are applied aerially over larger areas. The risk assessment and regulation of pesticides so far relies on temperate models and test species and is therefore likely underestimating the risk of pesticide use in tropical ecosystems, with crops such as banana. We highlight further research approaches to improve risk assessment and, in parallel, urge to follow other strategies to reduce pesticides use and especially hazardous substances

    Modeling Regulatory Threshold Levels for Pesticides in Surface Waters from Effect Databases

    No full text
    Regulatory threshold levels (RTL) represent robust benchmarks for assessing risks of pesticides, e.g., in surface waters. However, comprehensive scientific risk evaluations comparing RTL to measured environmental concentrations (MEC) of pesticides in surface waters were yet restricted to a low number of pesticides, as RTL are only available after extensive review of regulatory documents. Thus, the aim of the present study was to model RTL equivalents (RTLe) for aquatic organisms from publicly accessible ecotoxicological effect databases. We developed a model that applies validity criteria in accordance with official US EPA review guidelines and validated the model against a set of manually retrieved RTL (n = 49). Model application yielded 1283 RTLe (n = 676 for pesticides, plus 607 additional RTLe for other use types). In a case study, the usability of RTLe was demonstrated for a set of 27 insecticides by comparing RTLe and RTL exceedance rates for 3001 MEC from US surface waters. The provided dataset enables thorough risk assessments of surface water exposure data for a comprehensive number of substances. Especially regions without established pesticide regulations may benefit from this dataset by using it as a baseline information for pesticide risk assessment and for the identification of priority substances or potential high-risk regions

    Multiple Stressors in Aquatic Ecosystems: Sublethal Effects of Temperature, Dissolved Organic Matter, Light and a Neonicotinoid Insecticide on Gammarids

    No full text
    Whether and to which extent the effects of chemicals in the environment interact with other factors remains a scientific challenge. Here we assess the combined effects of temperature (16 vs. 20 degrees C), light conditions (darkness vs. 400 lx), dissolved organic matter (DOM; 0 vs. 6 mg/L) and the model insecticide thiacloprid (0 vs. 3 mu g/L) in a full-factorial experiment on molting and leaf consumption ofGammarus fossarum. Thiacloprid was the only factor significantly affecting gammarids' molting. While DOM had low effects on leaf consumption, temperature, light and thiacloprid significantly affected this response variable. The various interactions among these factors were not significant suggesting additivity. Only the interaction of the factors temperature and thiacloprid suggested a tendency for antagonism. As most stressors interacted additively, their joint effects may be predictable with available models. However, synergistic interactions are difficult to capture while being central for securing ecosystem integrity

    Graphing Ecotoxicology: The MAGIC Graph for Linking Environmental Data on Chemicals

    No full text
    Assessing the impact of chemicals on the environment and addressing subsequent issues are two central challenges to their safe use. Environmental data are continuously expanding, requiring flexible, scalable, and extendable data management solutions that can harmonize multiple data sources with potentially differing nomenclatures or levels of specificity. Here, we present the methodological steps taken to construct a rule-based labeled property graph database, the “Meta-analysis of the Global Impact of Chemicals„ (MAGIC) graph, for potential environmental impact chemicals (PEIC) and its subsequent application harmonizing multiple large-scale databases. The resulting data encompass 16,739 unique PEICs attributed to their corresponding chemical class, stereo-chemical information, valid synonyms, use types, unique identifiers (e.g., Chemical Abstract Service registry number CAS RN), and others. These data provide researchers with additional chemical information for a large amount of PEICs and can also be publicly accessed using a web interface. Our analysis has shown that data harmonization can increase up to 98% when using the MAGIC graph approach compared to relational data systems for datasets with different nomenclatures. The graph database system and its data appear more suitable for large-scale analysis where traditional (i.e., relational) data systems are reaching conceptional limitations

    Large monitoring datasets reveal high probabilities for intermittent occurrences of pesticides in European running waters

    No full text
    Abstract Many studies have investigated short-term peak concentrations of pesticides in surface waters resulting from agricultural uses. However, we lack information to what extent pesticides reoccur over medium (> 4 days) and longer time periods (> 10 days). We use here large-scale pesticide monitoring data from across Europe (~ 15 mil. measurements, i.e., quantified concentrations in water at > 17,000 sites for 474 pesticide compounds) to evaluate the degree to which pesticides were not only detected once, but in sequences of a compound repeatedly quantified in the same area (0.015 km2) within 4–30 days. Reoccurrence was observed at ~ 18% of sites for > 76% of compounds, ~ 40% of which not a priori considered to chronically expose aquatic ecosystems. We calculated a probability of reoccurrence (POR) over medium-term (4–7 days) and long-term (8–30 days) time periods for ~ 360 pesticides. Relative PORs (ratio between long-term and medium-term POR) revealed three occurrence patterns: ephemeral, intermittent and permanent. While fungicides dominated intermittently occurring substances, aligning with application strategies and physico-chemical properties, neonicotinoids and legacy pesticides were among substances permanently occurring. The results of this study shed new light on previously underestimated longer-term occurrence of many pesticides in aquatic environments (35% of investigated substances occurring intermittently or permanently were previously not considered to pollute the aquatic environment chronically), entailing new challenges for chronic risk assessments and the evaluation of pesticide effects on aquatic biodiversity
    corecore