46 research outputs found
The Relationship of Historical Redlining with Present-Day Neighborhood Environmental and Health Outcomes: A Scoping Review and Conceptual Model.
Following the Great Depression and related home foreclosures, the federal government established new agencies to facilitate access to affordable home mortgages, including the Home Owners' Loan Corporation (HOLC) and Federal Housing Administration (FHA). HOLC and FHA directed widespread neighborhood appraisals to determine investment risk, referred to as "redlining," which took into account residents' race. Redlining thereby contributed to segregation, disinvestment, and racial inequities in opportunities for homeownership and wealth accumulation. Recent research examines associations between historical redlining and subsequent environmental determinants of health and health-related outcomes. In this scoping review, we assess the extent of the current body of evidence, the range of outcomes studied, and key study characteristics, examining the direction and strength of the relationship between redlining, neighborhood environments, and health as well as different methodological approaches. Overall, studies nearly universally report evidence of an association between redlining and health-relevant outcomes, although heterogeneity in study design precludes direct comparison of results. We critically consider evidence regarding HOLC's causality and offer a conceptual framework for the relationship between redlining and present-day health. Finally, we point to key directions for future research to improve and broaden understanding of redlining's enduring impact and translate findings into public health and planning practice
Recommended from our members
High-resolution gridded estimates of population sociodemographics from the 2020 census in California.
This paper introduces a series of high resolution (100-meter) population grids for eight different sociodemographic variables across the state of California using data from the 2020 census. These layers constitute the 'CA-POP' dataset, and were produced using dasymetric mapping methods to downscale census block populations using fine-scale residential tax parcel boundaries and Microsoft's remotely-sensed building footprint layer as ancillary datasets. In comparison to a number of existing gridded population products, CA-POP shows good concordance and offers a number of benefits, including more recent data vintage, higher resolution, more accurate building footprint data, and in some cases more sophisticated but parsimonious and transparent dasymetric mapping methodologies. A general accuracy assessment of the CA-POP dasymetric mapping methodology was conducted by producing a population grid that was constrained by population observations within block groups instead of blocks, enabling a comparison of this grid's population apportionment to block-level census values, yielding a median absolute relative error of approximately 30% for block group-to-block apportionment. However, the final CA-POP grids are constrained by higher-resolution census block-level observations, likely making them even more accurate than these block group-constrained grids over a given region, but for which error assessments of population disaggregation is not possible due to the absence of observational data at the sub-block scale. The CA-POP grids are freely available as GeoTIFF rasters online at github.com/njdepsky/CA-POP, for total population, Hispanic/Latinx population of any race, and non-Hispanic populations for the following groups: American Indian/Alaska Native, Asian, Black/African-American, Native Hawaiian and other Pacific Islander, White, other race or multiracial (two or more races) and residents under 18 years old (i.e. minors)
High-resolution gridded estimates of population sociodemographics from the 2020 census in California.
This paper introduces a series of high resolution (100-meter) population grids for eight different sociodemographic variables across the state of California using data from the 2020 census. These layers constitute the 'CA-POP' dataset, and were produced using dasymetric mapping methods to downscale census block populations using fine-scale residential tax parcel boundaries and Microsoft's remotely-sensed building footprint layer as ancillary datasets. In comparison to a number of existing gridded population products, CA-POP shows good concordance and offers a number of benefits, including more recent data vintage, higher resolution, more accurate building footprint data, and in some cases more sophisticated but parsimonious and transparent dasymetric mapping methodologies. A general accuracy assessment of the CA-POP dasymetric mapping methodology was conducted by producing a population grid that was constrained by population observations within block groups instead of blocks, enabling a comparison of this grid's population apportionment to block-level census values, yielding a median absolute relative error of approximately 30% for block group-to-block apportionment. However, the final CA-POP grids are constrained by higher-resolution census block-level observations, likely making them even more accurate than these block group-constrained grids over a given region, but for which error assessments of population disaggregation is not possible due to the absence of observational data at the sub-block scale. The CA-POP grids are freely available as GeoTIFF rasters online at github.com/njdepsky/CA-POP, for total population, Hispanic/Latinx population of any race, and non-Hispanic populations for the following groups: American Indian/Alaska Native, Asian, Black/African-American, Native Hawaiian and other Pacific Islander, White, other race or multiracial (two or more races) and residents under 18 years old (i.e. minors)
Racial Disparities in Climate Change-Related Health Effects in the United States.
Purpose of reviewClimate change is causing warming over most parts of the USA and more extreme weather events. The health impacts of these changes are not experienced equally. We synthesize the recent evidence that climatic changes linked to global warming are having a disparate impact on the health of people of color, including children.Recent findingsMultiple studies of heat, extreme cold, hurricanes, flooding, and wildfires find evidence that people of color, including Black, Latinx, Native American, Pacific Islander, and Asian communities are at higher risk of climate-related health impacts than Whites, although this is not always the case. Studies of adults have found evidence of racial disparities related to climatic changes with respect to mortality, respiratory and cardiovascular disease, mental health, and heat-related illness. Children are particularly vulnerable to the health impacts of climate change, and infants and children of color have experienced adverse perinatal outcomes, occupational heat stress, and increases in emergency department visits associated with extreme weather. The evidence strongly suggests climate change is an environmental injustice that is likely to exacerbate existing racial disparities across a broad range of health outcomes
Residential Proximity to Oil and Gas Development and Birth Outcomes in California: A Retrospective Cohort Study of 2006-2015 Births.
BackgroundStudies suggest associations between oil and gas development (OGD) and adverse birth outcomes, but few epidemiological studies of oil wells or inactive wells exist, and none in California.ObjectiveOur study aimed to investigate the relationship between residential proximity to OGD and birth outcomes in California.MethodsWe conducted a retrospective cohort study of 2,918,089 births to mothers living within 10 km of at least one production well between January 1, 2006 and December 31, 2015. We estimated exposure during pregnancy to inactive wells count (no inactive wells, 1 well, 2-5 wells, 6+ wells) and production volume from active wells in barrels of oil equivalent (BOE) (no BOE, 1-100 BOE/day, >100 BOE/day). We used generalized estimating equations to examine associations between overall and trimester-specific OGD exposures and term birth weight (tBW), low birth weight (LBW), preterm birth (PTB), and small for gestational age birth (SGA). We assessed effect modification by urban/rural community type.ResultsAdjusted models showed exposure to active OGD was associated with adverse birth outcomes in rural areas; effect estimates in urban areas were close to null. In rural areas, increasing production volume was associated with stronger adverse effect estimates. High (>100 BOE/day) vs. no production throughout pregnancy was associated with increased odds of LBW [odds ratio (OR)=1.40, 95% confidence interval (CI): 1.14, 1.71] and SGA (OR=1.22, 95% CI: 1.02, 1.45), and decreased tBW (mean difference = -36 grams, 95% CI: -54, -17), but not with PTB (OR=1.03, 95% CI: 0.91, 1.18).ConclusionProximity to higher production OGD in California was associated with adverse birth outcomes among mothers residing in rural areas. Future studies are needed to confirm our findings in other populations and improve exposure assessment measures. https://doi.org/10.1289/EHP5842
Recommended from our members
Residential proximity to hydraulically fractured oil and gas wells and adverse birth outcomes in urban and rural communities in California (2006-2015).
BackgroundPrenatal exposure to hydraulic fracturing (HF), a chemically intensive oil and gas extraction method, may be associated with adverse birth outcomes, but no health studies have been conducted in California.MethodsWe conducted a retrospective cohort study of 979,961 births to mothers in eight California counties with HF between 2006 and 2015. Exposed individuals had at least 1 well hydraulically fractured within 1 km of their residence during pregnancy; the reference population had no wells within 1 km, but at least one oil/gas well within 10 km. We examined associations between HF and low birth weight (LBW), preterm birth (PTB), small for gestational age birth (SGA), and term birth weight (tBW) using generalized estimating equations and assessing urban-rural effect modification in stratified models.ResultsFewer than 1% of mothers (N = 1,192) were exposed to HF during pregnancy. Among rural mothers, HF exposure was associated with increased odds of LBW (odds ratio [OR] = 1.74; 95% confidence interval [CI] = 1.10, 2.75), SGA (OR = 1.68; 95% CI = 1.42, 2.27) and PTB (OR = 1.17; 95% CI = 0.64, 2.12), and lower tBW (mean difference: -73 g; 95% CI = -131, -15). Among urban mothers, HF exposure was positively associated with SGA (OR = 1.23; 95% CI = 0.98, 1.55), inversely associated with LBW (OR = 0.83; 95% CI = 0.63, 1.07) and PTB (OR = 0.65; 95% CI = 0.48, 0.87), and not associated with tBW (mean difference: -2 g; 95% CI = -35, 31).ConclusionHF proximity was associated with adverse birth outcomes, particularly among rural Californians
Flaring from Unconventional Oil and Gas Development and Birth Outcomes in the Eagle Ford Shale in South Texas.
BackgroundPrior studies suggest exposure to oil and gas development (OGD) adversely affects birth outcomes, but no studies have examined flaring-the open combustion of natural gas-from OGD.ObjectivesWe investigated whether residential proximity to flaring from OGD was associated with shorter gestation and reduced fetal growth in the Eagle Ford Shale of south Texas.MethodsWe conducted a retrospective cohort study using administrative birth records from 2012 to 2015 (N=23,487) and satellite observations of flaring activity during pregnancy within 5km of maternal residence. Multivariate logistic and linear regression models were used to estimate associations between four outcomes (preterm birth, small-for-gestational age, continuous gestational age, and term birthweight) and exposure to a low (1-9) or high (≥10) number of nightly flare events, as compared with no exposure, while controlling for known maternal risk factors. We also examined associations with the number of oil and gas wells within 5km using data from DrillingInfo (now Enverus).ResultsExposure to a high number of nightly flare events was associated with a 50% higher odds of preterm birth [odds ratio (OR)=1.50 (95% CI: 1.23, 1.83)] and shorter gestation [mean difference=-1.9 (95% CI: -2.8, -0.9) d] compared with no exposure. Effect estimates were slightly reduced after adjustment for the number of wells within 5km. In stratified models these associations were present only among Hispanic women. Flaring and fetal growth outcomes were not significantly associated. Women exposed to a high number of wells (fourth quartile, ≥27) vs. no wells within 5km had a higher odds of preterm birth [OR=1.31 (95% CI: 1.14, 1.49)], shorter gestation [-1.3 (95% CI: -1.9, -0.8) d], and lower average birthweight [-19.4 (95% CI: -36.7, -2.0) g].DiscussionOur study suggests exposure to flaring from OGD is associated with an increased risk of preterm birth. Our findings need to be confirmed in other populations. https://doi.org/10.1289/EHP6394