262 research outputs found

    Working with older drinkers

    Get PDF
    Findings presented in this report demonstrate that older drinkers have different stressors, precipitating factors and risk factors for relapse than younger drinkers. They also face a number of unique barriers to treatment and are more likely to remain ‘hidden’ from services. Despite these challenges, age-specific practices required to meet the needs of older people and draw them into treatment are poorly understood. The purpose of this project was to develop guidelines on what strategies and treatment approaches are likely to work best with older drinkers based on synthesis of relevant literature, insight from alcohol practitioners who specialise in working with older people and the perspectives of older people receiving alcohol treatment. A set of concise guidance documents will be prepared for health and social care workers and alcohol service providers in due course

    Temporal variability of micro-organic contaminants in lowland chalk catchments: new insights into contaminant sources and hydrological processes

    Get PDF
    This paper explores the temporal variation of a broad suite of micro organic (MO) compounds within hydrologically linked compartments of a lowland Chalk catchment, the most important drinking water aquifer in the UK. It presents an assessment of results from relatively high frequency monitoring at a well-characterised site, including the type and concentrations of compounds detected and how they change under different hydrological conditions including exceptionally high groundwater levels and river flow conditions during 2014 and subsequent recovery. This study shows for the first time that within the Chalk groundwater there can be a greater diversity of the MOs compared to surface waters. Within the Chalk 26 different compounds were detected over the duration of the study compared to 17 in the surface water. Plasticisers (0.06–39 ÎŒg/L) were found to dominate in the Chalk groundwater on 5 visits (38.4%) accounting for 14.5% of detections but contributing highest concentrations whilst other compounds dominated in the surface water. Trichloroethene and atrazine were among the most frequently detected compounds. The limit for the total pesticide concentration detected did not exceed EU/UK prescribed concentration values for drinking water. Emerging organic compounds such as caffeine, which currently do not have water quality limits, were also detected. The low numbers of compounds found within the hyporheic zone highlight the role of this transient interface in the attenuation and breakdown of the MOs, and provision of an important ecosystem service

    Intensive groundwater exploitation in the Punjab : an evaluation of resource and quality trends

    Get PDF
    This report summarises initial findings from a case study investigating the response of groundwater resources in Punjab State, India, to irrigated agriculture. Punjab was central to India’s green revolution, and with fertile soils, abundant surface water and groundwater resources, Indian’s farmers soon transformed the State to be the “bread basket” of India. Currently approximately 20% and 11% respectively of India’s wheat and rice production, 10% of cotton production comes from Punjab. The aim of the case study is to examine the response of groundwater in a representative area within Punjab to current pressures from sustained intensive abstraction and pollution, investigate groundwater recharge, and forecast likely future trajectories. The Bist-Doab area was chosen as for the case study: the geology and hydrogeology is typical of the Punjab, situated on the thick and extensive multi-layered alluvial Indo-Gangetic aquifer and has an annual average rainfall of 700 mm. The Doab is one of the most productive agricultural regions in the Punjab and has experienced intense groundwater pumping from shallow aquifers for at least the last four decades. The hydrogeology of this region is best understood as an aquifer system comprising a series of thick high permeability horizons (>10 m thick) divided by thick low permeability horizons with highly variable lateral extent. Locally these are referred to as the first (shallow), second and third etc. (deep) aquifers, although the aquifers are not laterally continuous over long distrances. The following work was undertaken from 2013 to 2014: An analysis of groundwater level monitoring data (1970-2012) from the Indian Central Ground Water Board (CGWB) was carried out. New hydrochemical observations and residence time indicators (CFC and SF6) taken from 19 locations were obtained from paired shallow (100 mbgl) sites across the Bist-Doab under pre and post monsoon conditions. Stable isotope observations were collected and assessed within the context of an ongoing study by NIH investigating spatial and temporal changes in stable isotope chemistry in groundwater and surface water across Bist-Doab. Long-term groundwater monitoring undertaken by the CGWB since the 1970s shows declining shallow pre-monsoon groundwater levels (up to 0.8 m/y in places) across 20-25% of the Bist-Doab. Hydrographs responses imply that for some areas this has led to enhanced recharge during the monsoon. However, for the most affected region of the Bist-Doab, declining post monsoon water levels suggest that abstraction for irrigation is now outstripping the enhanced recharge potential. In the long-term this will lead to a continued decline in shallow groundwater levels pre-monsoon, currently commonly found to be >20 mbgl, with future implications for irrigation. For most sites there is a significant difference between stable isotope values for the paired deep and the shallow groundwater, with deeper sites showing isotopically depleted signatures relative to the shallow samples. This is consistent with different recharge areas and pathways for the paired sites at any given location, with the deeper sites have a greater component of water that was recharged some distance up-gradient (i.e. towards the recharge zone at the foot of the Shiwalik range). This source has a depleted isotope signature compared to the shallow aquifer due to Raleigh distillation processes as monsoon moisture tracks from the Bay of Bengal. Based on the distinct depleted stable isotope values of the Sutlej canal system, there is no evidence of significant component of regional groundwater recharge in either the shallow or deeper aquifer from this source. However, it is likely that this is important at locations in close proximity to the canal network. Results obtained using chlorofluorocarbon (CFC-12) groundwater age tracers show that average shallow groundwater mean residence times (MRTs) are 29 years and 30 years under post-monsoon and pre-monsoon conditions. Deep groundwater (>100 mbgl) had median MRTs of 45 vii years. There is no obvious relationship between deep groundwater MRTs and distance from the recharge zone at the foot of the Shiwalik hills. However, deep groundwater MRTs are much younger than would be expected under natural groundwater flow regimes, where groundwater residence times of the order of ca.102-103 years or more might be expected based on the aquifer properties and the distance from the recharge zone, some 50- 100 km down-gradient in many cases. Areas with fastest long-term declining groundwater levels show evidence of enhanced modern recharge in both shallow and deep groundwater, suggesting that there is a significant component of vertical leakage to deeper aquifers induced by long-term intensive pumping. This corroborates findings from modelling studies undertaken in analogous multi-layered alluvial systems in Gujerat, India (Rushton 1986). There is evidence of nitrate breakthrough from the shallow groundwater to depth and this is likely to be enhanced in the future if the current increases in pumping from the shallow and deep aquifers continue. This has implications for future contamination of deep sources of drinking water from other anthropogenic contaminants such as pesticides. The naturally occurring contaminants arsenic and fluoride were present at concentrations below WHO guideline drinking water limits for all sites and median concentrations were below 2 g/L and 0.4 mg/L respectively. Uranium concentrations in deep groundwater are significantly higher compared to shallow groundwater (p15 g/L, the provisional WHO guideline concentration for drinking water is currently 30 g/L (WHO, 2012). This is a result of water-rock interactions and mineral dissolution and longer residence times. The findings from this case study have broad relevance across a large geographical area as similar groundwater typologies extend within the Indus basin, to the west across Indian Punjab, Rajasthan and Pakisan Punjab as well as in the Ganga basin to the east in the Indian states of Haryana and Delhi. While the broad findings from this study are relevant across a large geographical area, local anthropogenic and geogenic factors, as well as heterogeneity, will of course influence the recharge, hydraulic flow processes and geochemistry, and need to be considered in a consistent way

    pH Responsive Highly Branched Poly(N-isopropylacrylamide) with Trihistidine or Acid Chain Ends

    Get PDF
    YesThermally responsive highly branched poly(N-isopropyl acrylamide)s (HB-PNIPAM) were prepared and end-functionalised to give polymers with acid or trihistidine end groups. These polymers exhibit a broad coil-to-globule transition across a wide temperature range which can be measured using covalently attached fluorescent tags. The acid chain ends provided a material with a distinct change in solution behaviour at pH close to the pKa of the carboxylate group. At pH 11 this polymer did not show a cloud point up to 50 °C but fluorescence measurements on the labelled polymers showed that a coil to glubule transition did take place. The globular state, above the LCST, appeared to be more swollen if the end group carried charge then when it was uncharged. A polymer with trihistidine and free carboxylate chain ends, which contained multiple charges at various pH, did show LCSTs at all pH and the polymer globule was shown to be swollen at each pH

    Persistent and emerging micro-organic contaminants in Chalk groundwater of England and France

    Get PDF
    The Chalk aquifer of Northern Europe is an internationally important source of drinking water and sustains baseflow for surface water ecosystems. The areal distribution of microorganic (MO) contaminants, particularly non-regulated emerging MOs, in this aquifer is poorly understood. This study presents results from a reconnaissance survey of MOs in Chalk groundwater, including pharmaceuticals, personal care products and pesticides and their transformation products, conducted across the major Chalk aquifers of England and France. Data from a total of 345 sites collected during 2011 were included in this study to provide a representative baseline assessment of MO occurrence in groundwater. A suite of 42 MOs were analysed for at each site including industrial compounds (n = 16), pesticides (n = 14) and pharmaceuticals, personal care and lifestyle products (n = 12). Occurrence data is evaluated in relation to land use, aquifer exposure, well depth and depth to groundwater to provide an understanding of vulnerable groundwater settings

    In situ tryptophan-like fluorometers: assessing turbidity and temperature effects for freshwater applications

    Get PDF
    Tryptophan-like fluorescence (TLF) is an indicator of human influence on water quality as TLF peaks are associated with the input of labile organic carbon (e.g. sewage or farm waste) and its microbial breakdown. Hence, real-time measurement of TLF could be particularly useful for monitoring water quality at a higher temporal resolution than available hitherto. However, current understanding of TLF quenching/interference is limited for field deployable sensors. We present results from a rigorous test of two commercially available submersible tryptophan fluorometers (ex _ 285, em _ 350). Temperature quenching and turbidity interference were quantified in the laboratory and compensation algorithms developed. Field trials were then undertaken involving: (i) an extended deployment (28 days) in a small urban stream; and, (ii) depth profiling of an urban multi-level borehole. TLF was inversely related to water temperature (regression slope range: _1.57 to _2.50). Sediment particle size was identified as an important control on the turbidity specific TLF response, with signal amplification apparent 200 NTU for clay particles. Compensation algorithms significantly improved agreement between in situ and laboratory readings for baseflow and storm conditions in the stream. For the groundwater trial, there was an excellent agreement between laboratory and raw in situ TLF; temperature compensation provided only a marginal improvement, and turbidity corrections were unnecessary. These findings highlight the potential utility of real time TLF monitoring for a range of environmental applications (e.g. tracing polluting sources and monitoring groundwater contamination). However, in situations where high/ variable suspended sediment loads or rapid changes in temperature are anticipated concurrent monitoring of turbidity and temperature is required and site specific calibration is recommended for long term, surface water monitoring

    Seasonal, episodic and periodic changes in terrestrial water storage recorded By DEEP Piezometric Monitoring in the Ganges/Brahmaputra/Meghna DELTA

    Get PDF
    Piezometric monitoring in vertical profile at sites across the southern and coastal floodplains of the Ganges/Brahmaputra/Meghna (GBM) delta confirms gravitational flow in sediments of the Bengal Aquifer System (BAS) to a depth of at least 320 m (the maximum depth of measurement). Individual and paired records of groundwater head indicate seasonal recovery and recession of water storage, periodic and episodic ground surface loading, and earth tide responses. Lunar periodicity in groundwater head fluctuation coincident with tide height at one coastal site is consistent with tidal surface loading/unloading. Diurnal tidal fluctuations in the same record change amplitude and shift phase with depth, also indicative of surface loading/unloading. Transience in the surface loading signals with depth is governed by the vertically integrated hydraulic properties of the thick BAS sedimentary sequence. Inland, earth tide responses of smaller amplitude and lacking phase shift with depth are ubiquitous in the background signal. Most records include clearly resolvable episodic deflections in the order of 0.1 m water head and up to 0.5 m water head, near simultaneous with depth, corresponding to individual episodes of rainfall. The episodic head deflections provide a record of change in terrestrial water storage (ΔTWS) comprising undifferentiated surface water flooding, soil moisture and shallow groundwater recharge – a direct land-based equivalent of satellite estimates of ΔTWS. Enigmatic short-term recession from individual deflection peaks may be related to elastic deformation and ground surface lowering under terrestrial water storage loading
    • 

    corecore