217 research outputs found

    Spatial heterogeneity of habitat suitability for Rift Valley fever occurrence in Tanzania: an ecological niche modelling approach

    Get PDF
    Despite the long history of Rift Valley fever (RVF) in Tanzania, extent of its suitable habitat in the country remains unclear. In this study we investigated potential effects of temperature, precipitation, elevation, soil type, livestock density, rainfall pattern, proximity to wild animals, protected areas and forest on the habitat suitability for RVF occurrence in Tanzania. Presence-only records of 193 RVF outbreak locations from 1930 to 2007 together with potential predictor variables were used to model and map the suitable habitats for RVF occurrence using ecological niche modelling. Ground-truthing of the model outputs was conducted by comparing the levels of RVF virus specific antibodies in cattle, sheep and goats sampled from locations in Tanzania that presented different predicted habitat suitability values. Habitat suitability values for RVF occurrence were higher in the northern and central-eastern regions of Tanzania than the rest of the regions in the country. Soil type and precipitation of the wettest quarter contributed equally to habitat suitability (32.4% each), followed by livestock density (25.9%) and rainfall pattern (9.3%). Ground-truthing of model outputs revealed that the odds of an animal being seropositive for RVFV when sampled from areas predicted to be most suitable for RVF occurrence were twice the odds of an animal sampled from areas least suitable for RVF occurrence (95% CI: 1.43, 2.76, p < 0.001). The regions in the northern and central-eastern Tanzania were more suitable for RVF occurrence than the rest of the regions in the country. The modelled suitable habitat is characterised by impermeable soils, moderate precipitation in the wettest quarter, high livestock density and a bimodal rainfall pattern. The findings of this study should provide guidance for the design of appropriate RVF surveillance, prevention and control strategies which target areas with these characteristics

    Reduction in the levels of CoQ biosynthetic proteins is related to an increase in lifespan without evidence of hepatic mitohormesis

    Get PDF
    Mitohormesis is an adaptive response induced by a mild mitochondrial stress that promotes longevity and metabolic health in different organisms. This mechanism has been proposed as the cause of the increase in the survival in Coq7+/− (Mclk1+/−) mice, which show hepatic reduction of COQ7, early mitochondrial dysfunction and increased oxidative stress. Our study shows that the lack of COQ9 in Coq9Q95X mice triggers the reduction of COQ7, COQ6 and COQ5, which results in an increase in life expectancy. However, our results reveal that the hepatic CoQ levels are not decreased and, therefore, neither mitochondrial dysfunction or increased oxidative stress are observed in liver of Coq9Q95X mice. These data point out the tissue specific differences in CoQ biosynthesis. Moreover, our results suggest that the effect of reduced levels of COQ7 on the increased survival in Coq9Q95X mice may be due to mitochondrial mechanisms in non-liver tissues or to other unknown mechanisms.This work was supported by grants from Ministerio de Economía Competitividad, Spain, and the ERDF (Grant Number SAF2015-65786-R), from the Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (grant number P10-CTS-6133) and from the University of Granada (grant reference “UNETE”, UCE-PP2017-06). AHG is a “FPU fellow” from the Ministerio de Educación Cultura y Deporte, Spain. MLS was a predoctoral fellow from the Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía. LCL was supported by the “Ramón y Cajal” National Programme, Ministerio de Economía y Competitividad, Spain (RYC-2011-07643)

    MUC-1 gene is associated with prostate cancer death: a 20-year follow-up of a population-based study in Sweden

    Get PDF
    Anti-adhesion mucins have proven to play an important part in the biology of several types of cancer. Therefore, we test the hypothesis that altered expression of MUC-1 is associated with prostate cancer progression. We retrieved archival tumour tissue from a population-based cohort of 195 men with localised prostate cancer (T1a-b, Nx, M0) that has been followed for up to 20 years with watchful waiting. Semi-automated, quantitative immunohistochemistry was undertaken to evaluate MUC-1 expression. We modelled prostate cancer-specific death as a function of MUC-1 levels accounting for age, Gleason grade and tumour extent, and calculated age-adjusted and multivariate adjusted hazard ratios (HR). Men that had tumours with an MUC-intensity lower or higher than normal tissue had a higher risk of dying in prostate cancer, independent of tumour extent and Gleason score (HR 5.1 and 4.5, respectively). Adjustment for Gleason grade and tumour stage did not alter the results. Men with a Gleason score ⩾7 and MUC-1 deviating from the normal had a 17 (RR=17.1 95% confidence interval=2.3–128) times higher risk to die in prostate cancer compared with men with Gleason score <7 and normal MUC-1 intensity. In summary, our data show that MUC-1 is an independent prognostic marker for prostate cancer death

    Laser-directed hierarchical assembly of liquid crystal defects and control of optical phase singularities

    Get PDF
    Topological defect lines are ubiquitous and important in a wide variety of fascinating phenomena and theories in many fields ranging from materials science to early-universe cosmology, and to engineering of laser beams. However, they are typically hard to control in a reliable manner. Here we describe facile erasable “optical drawing” of self-assembled defect clusters in liquid crystals. These quadrupolar defect clusters, stabilized by the medium's chirality and the tendency to form twisted configurations, are shaped into arbitrary two-dimensional patterns, including reconfigurable phase gratings capable of generating and controlling optical phase singularities in laser beams. Our findings bridge the studies of defects in condensed matter physics and optics and may enable applications in data storage, singular optics, displays, electro-optic devices, diffraction gratings, as well as in both optically- and electrically-addressed pixel-free spatial light modulators

    A Minimal Fragment of MUC1 Mediates Growth of Cancer Cells

    Get PDF
    The MUC1 protein is aberrantly expressed on many solid tumor cancers. In contrast to its apical clustering on healthy epithelial cells, it is uniformly distributed over cancer cells. However, a mechanistic link between aberrant expression and cancer has remained elusive. Herein, we report that a membrane-bound MUC1 cleavage product, that we call MUC1*, is the predominant form of the protein on cultured cancer cells and on cancerous tissues. Further, we demonstrate that transfection of a minimal fragment of MUC1, MUC1*1110, containing a mere forty-five (45) amino acids of the extracellular domain, is sufficient to confer the oncogenic activities that were previously attributed to the full-length protein. By comparison of molecular weight and function, it appears that MUC1* and MUC1*1110 are approximately equivalent. Evidence is presented that strongly supports a mechanism whereby dimerization of the extracellular domain of MUC1* activates the MAP kinase signaling cascade and stimulates cell growth. These findings suggest methods to manipulate this growth mechanism for therapeutic interventions in cancer treatments

    An algorithm for classifying tumors based on genomic aberrations and selecting representative tumor models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer is a heterogeneous disease caused by genomic aberrations and characterized by significant variability in clinical outcomes and response to therapies. Several subtypes of common cancers have been identified based on alterations of individual cancer genes, such as HER2, EGFR, and others. However, cancer is a complex disease driven by the interaction of multiple genes, so the copy number status of individual genes is not sufficient to define cancer subtypes and predict responses to treatments. A classification based on genome-wide copy number patterns would be better suited for this purpose.</p> <p>Method</p> <p>To develop a more comprehensive cancer taxonomy based on genome-wide patterns of copy number abnormalities, we designed an unsupervised classification algorithm that identifies genomic subgroups of tumors. This algorithm is based on a modified genomic Non-negative Matrix Factorization (gNMF) algorithm and includes several additional components, namely a pilot hierarchical clustering procedure to determine the number of clusters, a multiple random initiation scheme, a new stop criterion for the core gNMF, as well as a 10-fold cross-validation stability test for quality assessment.</p> <p>Result</p> <p>We applied our algorithm to identify genomic subgroups of three major cancer types: non-small cell lung carcinoma (NSCLC), colorectal cancer (CRC), and malignant melanoma. High-density SNP array datasets for patient tumors and established cell lines were used to define genomic subclasses of the diseases and identify cell lines representative of each genomic subtype. The algorithm was compared with several traditional clustering methods and showed improved performance. To validate our genomic taxonomy of NSCLC, we correlated the genomic classification with disease outcomes. Overall survival time and time to recurrence were shown to differ significantly between the genomic subtypes.</p> <p>Conclusions</p> <p>We developed an algorithm for cancer classification based on genome-wide patterns of copy number aberrations and demonstrated its superiority to existing clustering methods. The algorithm was applied to define genomic subgroups of three cancer types and identify cell lines representative of these subgroups. Our data enabled the assembly of representative cell line panels for testing drug candidates.</p

    Fecal Tests: From Blood to Molecular Markers

    Get PDF
    Detection of molecular markers for colorectal neoplasia in feces has the potential to improve performance of simple noninvasive screening tests for colorectal cancer. Most research has explored the value of DNA-based, RNA-based, and protein-based markers. In all cases there has been a trend to move from a single marker to a panel of markers to improve sensitivity. Unfortunately, no type of molecular marker has proved specific for neoplasia. DNA tests have been improved by combining mutation detection with assessment of DNA integrity plus epigenetic markers of neoplasia. RNA-based approaches are just beginning to explore the full power of transcriptomics. So far, no protein-based fecal test has proved better than fecal immunochemical tests for hemoglobin. Finally, no marker or panel of markers has yet been developed to the point where it has been evaluated in large unbiased population studies to assess performance across all stages of neoplasia and in all practical environments
    corecore