173 research outputs found

    Graphene as a Novel Single Photon Counting Optical and IR Photodetector

    Full text link
    Bilayer graphene has many unique optoelectronic properties , including a tuneable band gap, that make it possible to develop new and more efficient optical and nanoelectronic devices. We have developed a Monte Carlo simulation for a single photon counting photodetector incorporating bilayer graphene. Our results show that, conceptually it would be feasible to manufacture a single photon counting photodetector (with colour sensitivity) from bilayer graphene for use across both optical and infrared wavelengths. Our concept exploits the high carrier mobility and tuneable band gap associated with a bilayer graphene approach. This allows for low noise operation over a range of cryogenic temperatures, thereby reducing the cost of cryogens with a trade off between resolution and operating temperature. The results from this theoretical study now enable us to progress onto the manufacture of prototype photon counters at optical and IR wavelengths that may have the potential to be groundbreaking in some scientific research applications.Comment: Conference Proceeding in Graphene-Based Technologies, 201

    Einstein Probe - a small mission to monitor and explore the dynamic X-ray Universe

    Full text link
    Einstein Probe is a small mission dedicated to time-domain high-energy astrophysics. Its primary goals are to discover high-energy transients and to monitor variable objects in the 0.5−4 0.5-4~keV X-rays, at higher sensitivity by one order of magnitude than those of the ones currently in orbit. Its wide-field imaging capability, featuring a large instantaneous field-of-view (60∘×60∘60^\circ \times60^\circ, ∼1.1\sim1.1sr), is achieved by using established technology of micro-pore (MPO) lobster-eye optics, thereby offering unprecedentedly high sensitivity and large Grasp. To complement this powerful monitoring ability, it also carries a narrow-field, sensitive follow-up X-ray telescope based on the same MPO technology to perform follow-up observations of newly-discovered transients. Public transient alerts will be downlinked rapidly, so as to trigger multi-wavelength follow-up observations from the world-wide community. Over three of its 97-minute orbits almost the entire night sky will be sampled, with cadences ranging from 5 to 25 times per day. The scientific objectives of the mission are: to discover otherwise quiescent black holes over all astrophysical mass scales by detecting their rare X-ray transient flares, particularly tidal disruption of stars by massive black holes at galactic centers; to detect and precisely locate the electromagnetic sources of gravitational-wave transients; to carry out systematic surveys of X-ray transients and characterize the variability of X-ray sources. Einstein Probe has been selected as a candidate mission of priority (no further selection needed) in the Space Science Programme of the Chinese Academy of Sciences, aiming for launch around 2020.Comment: accepted to publish in PoS, Proceedings of "Swift: 10 Years of Discovery" (Proceedings of Science; ed. by P. Caraveo, P. D'Avanzo, N. Gehrels and G. Tagliaferri). Minor changes in text, references update

    The first GCT camera for the Cherenkov Telescope Array

    Full text link
    The Gamma Cherenkov Telescope (GCT) is proposed to be part of the Small Size Telescope (SST) array of the Cherenkov Telescope Array (CTA). The GCT dual-mirror optical design allows the use of a compact camera of diameter roughly 0.4 m. The curved focal plane is equipped with 2048 pixels of ~0.2{\deg} angular size, resulting in a field of view of ~9{\deg}. The GCT camera is designed to record the flashes of Cherenkov light from electromagnetic cascades, which last only a few tens of nanoseconds. Modules based on custom ASICs provide the required fast electronics, facilitating sampling and digitisation as well as first level of triggering. The first GCT camera prototype is currently being commissioned in the UK. On-telescope tests are planned later this year. Here we give a detailed description of the camera prototype and present recent progress with testing and commissioning.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Investigation of the secondary emission characteristics of CVD diamond films for electron amplification

    Get PDF
    a b s t r a c t Chemical vapour deposition (CVD) diamond offers great potential as a low-cost, high-yield, easily manufactured secondary electron emitter for electron multiplication in devices such as photomultiplier tubes. Its potential for high secondary electron yield offers several significant benefits for these devices including higher time resolution, faster signal rise time, reduced pulse height distribution, low noise, and chemical stability. We describe an experiment to characterize the secondary emission yield of CVD diamond manufactured using different processes and process parameters and discuss the degradation of secondary electron yield and experimental difficulties encountered due to unwanted electron beaminduced contamination. We describe techniques utilized to overcome these difficulties, and present measurements of secondary yield from CVD diamond dynodes in reflection mode. We discuss the application of CVD diamond dynode technology, both in reflection and transmission mode, to advanced high-speed imaging and photon-counting detectors and describe future plans in this area

    High-Resolution Spectroscopy of G191-B2B in the Extreme Ultraviolet

    Get PDF
    We report a high-resolution (R=3000-4000) spectroscopic observation of the DA white dwarf G191-B2B in the extreme ultraviolet band 220-245 A. A low- density ionised He component is clearly present along the line-of-sight, which if completely interstellar implies a He ionisation fraction considerably higher than is typical of the local interstellar medium. However, some of this material may be associated with circumstellar gas, which has been detected by analysis of the C IV absorption line doublet in an HST STIS spectrum. A stellar atmosphere model assuming a uniform element distribution yields a best fit to the data which includes a significant abundance of photospheric He. The 99-percent confidence contour for the fit parameters excludes solutions in which photospheric He is absent, but this result needs to be tested using models allowing abundance gradients.Comment: LATEX format: 10 pages and 3 figures: accepted for publication in the Astrophysical Journal Letter

    Galactic Science with the Southern Wide-field Gamma-ray Observatory

    Get PDF
    The Southern Wide-field Gamma-ray Observatory (SWGO) is a proposed ground-based gamma-ray detector that will be located in the Southern Hemisphere and is currently in its design phase. In this contribution, we will outline the prospects for Galactic science with this Observatory. Particular focus will be given to the detectability of extended sources, such as gamma-ray halos around pulsars; optimisation of the angular resolution to mitigate source confusion between known TeV sources; and studies of the energy resolution and sensitivity required to study the spectral features of PeVatrons at the highest energies. Such a facility will ideally complement contemporaneous observatories in studies of high energy astrophysical processes in our Galaxy
    • …
    corecore