3 research outputs found

    People living with HIV display increased anti-apolipoprotein A1 auto-antibodies, inflammation, and kynurenine metabolites: a case–control study

    Get PDF
    ObjectiveThis study aimed to study the relationship between auto-antibodies against apolipoprotein A1 (anti-apoA1 IgG), human immunodeficiency virus (HIV) infection, anti-retroviral therapy (ART), and the tryptophan pathways in HIV-related cardiovascular disease.DesignThis case–control study conducted in South Africa consisted of control volunteers (n = 50), people living with HIV (PLWH) on ART (n = 50), and untreated PLWH (n = 44). Cardiovascular risk scores were determined, vascular measures were performed, and an extensive biochemical characterisation (routine, metabolomic, and inflammatory systemic profiles) was performed.MethodsAnti-apoA1 IgG levels were assessed by an in-house ELISA. Inflammatory biomarkers were measured with the Meso Scale Discovery® platform, and kynurenine pathway metabolites were assessed using targeted metabolomic profiling conducted by liquid chromatography-multiple reaction monitoring/mass spectrometry (LC-MRM/MS).ResultsCardiovascular risk scores and vascular measures exhibited similarities across the three groups, while important differences were observed in systemic inflammatory and tryptophan pathways. Anti-apoA1 IgG seropositivity rates were 15%, 40%, and 70% in control volunteers, PLWH ART-treated, and PLWH ART-naïve, respectively. Circulating anti-apoA1 IgG levels were significantly negatively associated with CD4+ cell counts and positively associated with viremia and pro-inflammatory biomarkers (IFNγ, TNFα, MIPα, ICAM-1, VCAM-1). While circulating anti-apoA1 IgG levels were associated with increased levels of kynurenine in both control volunteers and PLWH, the kynurenine/tryptophan ratio was significantly increased in PLWH ART-treated.ConclusionHIV infection increases the humoral response against apoA1, which is associated with established HIV severity criteria and kynurenine pathway activation

    Time-course proteomic analysis of taurocholate-induced necrotizing acute pancreatitis

    No full text
    Acute pancreatitis is an inflammatory disease of the pancreas, which varies greatly in course and severity. Severe forms are associated with serious local and/or systemic complications, and eventually death. The pathobiology of acute pancreatitis is complex. Animal models have been developed to investigate pathobiological processes and identify factors determining disease course. We performed a time-course proteomic analysis using a rat model of severe necrotizing acute pancreatitis induced by taurocholate perfusion in the pancreatic ducts. Results showed that levels of proteins associated to a given biological process changed in a coordinated fashion after disease onset. It was possible to follow the response of a particular pathobiological process to pancreatitis induction and to compare the course of protein pathways. Proteins involved in acinar cell secretion were found to follow a different kinetics than other cellular processes. After an initial decrease, secretory pathway-associated proteins raised again at 18 h post-induction. This phenomenon coincided with a burst in the expression of pancreatitis-associated protein (REG3A), an acute phase protein produced by the exocrine pancreas, and with the decrease of classical markers of pancreatic injury, suggesting that the expression of proteins associated to the secretory pathway may be a modulating factor of pancreas injury

    SAA (Serum Amyloid A): A Novel Predictor of Stroke-Associated Infections

    Full text link
    BACKGROUND AND PURPOSE The aim of this study was to evaluate and independently validate SAA (serum amyloid A)-a recently discovered blood biomarker-to predict poststroke infections. METHODS The derivation cohort (A) was composed of 283 acute ischemic stroke patients and the independent validation cohort (B), of 367 patients. The primary outcome measure was any stroke-associated infection, defined by the criteria of the US Centers for Disease Control and Prevention, occurring during hospitalization. To determine the association of SAA levels on admission with the development of infections, logistic regression models were calculated. The discriminatory ability of SAA was assessed, by calculating the area under the receiver operating characteristic curve. RESULTS After adjusting for all predictors that were significantly associated with any infection in the univariate analysis, SAA remained an independent predictor in study A (adjusted odds ratio, 1.44 [95% CI, 1.16-1.79]; P=0.001) and in study B (adjusted odds ratio, 1.52 [1.05-2.22]; P=0.028). Adding SAA to the best regression model without the biomarker, the discriminatory accuracy improved from 0.76 (0.69-0.83) to 0.79 (0.72-0.86; P<0.001; likelihood ratio test) in study A. These results were externally validated in study B with an improvement in the area under the receiver operating characteristic curve, from 0.75 (0.70-0.81) to 0.76 (0.71-0.82; P<0.038). CONCLUSIONS Among patients with ischemic stroke, blood SAA measured on admission is a novel independent predictor of infection after stroke. SAA improved the discrimination between patients who developed an infection compared with those who did not in both derivation and validation cohorts. Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT00390962
    corecore