108 research outputs found

    Magnetic order in Ce0.95Nd0.05CoIn5: the Q-phase at zero magnetic field

    Full text link
    We report neutron scattering experiment results revealing the nature of the magnetic order occurring in the heavy fermion superconductor Ce0.95Nd0.05CoIn5, a case for which an antiferromagnetic state is stabilized at a temperature below the superconducting transition one. We evidence an incommensurate order and its propagation vector is found to be identical to that of the magnetic field induced antiferromagnetic order occurring in the stoichiometric superconductor CeCoIn5, the so-called Q-phase. The commonality between these two cases suggests that superconductivity is a requirement for the formation of this kind of magnetic order and the proposed mechanism is the enhancement of nesting condition by d-wave order parameter with nodes in the nesting area.Comment: submitted to Phys. Rev. Lett. on June 30th, 201

    Assessment of the U and Co magnetic moments in UCoGe by X-ray magnetic circular dichroism

    Full text link
    The ferromagnetic superconductor UCoGe has been investigated by high field X-ray magnetic circular dichroism (XMCD) at the U-M4,5_{4,5} and Co/Ge-K edges. The analysis of the branching ratio and XMCD at the U-M4,5_{4,5} edges reveals that the U-5ff electrons count is close to 3. The orbital (0.70μB\sim0.70\,\mu_B) and spin (0.30μB\sim-0.30\,\mu_B) moments of U at 2.1K and 17T (H//c) have been determined. Their ratio (2.3\sim-2.3) suggests a significant delocalization of the 5ff electron states. The similar field dependences of the local U/Co and the macroscopic magnetization indicate that the Co moment is induced by the U moment. The XMCD at the Co/Ge-K edges reveal the presence of small Co-4pp and Ge-4pp orbital moments parallel to the macroscopic magnetization. In addition, the Co-3dd moment is estimated to be at most of the order of 0.1μB\mu_B at 17T. Our results rule out the possibility of an unusual polarisability of the U and Co moments as well as their antiparallel coupling. We conclude that the magnetism which mediates the superconductivity in UCoGe is driven by U.Comment: 4 figures + supplementary materia

    Optical conductivity of URu2_2Si2_2 in the Kondo Liquid and Hidden-Order Phases

    Full text link
    We measured the polarized optical conductivity of URu2_2Si2_2 from room temperature down to 5 K, covering the Kondo state, the coherent Kondo liquid regime, and the hidden-order phase. The normal state is characterized by an anisotropic behavior between the ab plane and c axis responses. The ab plane optical conductivity is strongly influenced by the formation of the coherent Kondo liquid: a sharp Drude peak develops and a hybridization gap at 12 meV leads to a spectral weight transfer to mid-infrared energies. The c axis conductivity has a different behavior: the Drude peak already exists at 300 K and no particular anomaly or gap signature appears in the coherent Kondo liquid regime. When entering the hidden-order state, both polarizations see a dramatic decrease in the Drude spectral weight and scattering rate, compatible with a loss of about 50 % of the carriers at the Fermi level. At the same time a density-wave like gap appears along both polarizations at about 6.5 meV at 5 K. This gap closes respecting a mean field thermal evolution in the ab plane. Along the c axis it remains roughly constant and it "fills up" rather than closing.Comment: 10 pages, 7 figure

    Upper critical field of CeCoIn5

    Full text link
    We present a detailed analysis of the upper critical field for CeCoIn5 under high pressure. We show that, consistently with other measurements, this system shows a decoupling between maximum of the superconducting transition temperature Tc and maximum pairing strength. This puts forward CeCoIn5 as an important paradigm for this class of unconventional, strongly correlated superconductors.Comment: 15 pages, 5 figures, author version, published in New J. Phy

    Thermal conductivity through the quantum critical point in YbRh2Si2 at very low temperature

    Full text link
    The thermal conductivity of YbRh2Si2 has been measured down to very low temperatures under field in the basal plane. An additional channel for heat transport appears below 30 mK, both in the antiferromagnetic and paramagnetic states, respectively below and above the critical field suppressing the magnetic order. This excludes antiferromagnetic magnons as the origin of this additional contribution to thermal conductivity. Moreover, this low temperature contribution prevails a definite conclusion on the validity or violation of the Wiedemann-Franz law at the field-induced quantum critical point. At high temperature in the paramagnetic state, the thermal conductivity is sensitive to ferromagnetic fluctuations, previously observed by NMR or neutron scattering and required for the occurrence of the sharp electronic spin resonance fracture.Comment: 11 pages + Supplementary Material

    Comment on ``Texture in the Superconducting Order Parameter of CeCoIn5_5 Revealed by Nuclear Magnetic Resonance''

    Full text link
    The study of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state has been of considerable recent interest. Below the temperature TT^* which is believed to be the transition temperature (TT) to the FFLO phase in CeCoIn5_5, K. Kakuyanagi et al. (Phys. Rev. Lett. 94, 047602 (2005)) reported a composite NMR spectrum with a tiny component observed at frequencies corresponding to the normal state signal. The results were interpreted as evidence for the emergence of an FFLO state. This result is inconsistent with two other NMR studies of V. F. Mitrovi{\'c} et al. (Phys. Rev. Lett. 97, 117002 (2006)) and B.-L. Young et al. (Phys. Rev. Lett. 98, 036402 (2007)). In this comment we show that the findings of K. Kakuyanagi et al. do not reflect the true nature of the FFLO state but result from excess RF excitation power used in that experiment.Comment: 1 page, to appear in PR

    Phase Diagram of CeCoIn_5 in the Vicinity of H_{c2} as Determined by NMR

    Full text link
    We report ^{115}In nuclear magnetic resonance (NMR) measurements in the heavy-fermion superconductor CeCoIn_5 as a function of temperature in different magnetic fields applied parallel to the (a^,b^)(\hat a, \hat b) plane. The measurements probe a part of the phase diagram in the vicinity of the superconducting critical field H_{c2} where a possible inhomogeneous superconducting state, Fulde-Ferrel-Larkin-Ovchinnikov (FFLO), is stabilized. We have identified clear NMR signatures of two phase transitions occurring in this part of the phase diagram. The first order phase transitions are characterized by the sizable discontinuity of the shift. We find that a continuous second order phase transition from the superconducting to the FFLO state occurs at temperature below which the shift becomes temperature independent. We have compiled the first phase diagram of CeCoIn_5 in the vicinity of H_{c2} from NMR data and found that it is in agreement with the one determined by thermodynamic measurements.Comment: 4 pages, submitted to Proceedings of SCES'0

    Reentrant valence transition in EuO at high pressures: beyond the bond-valence model

    Full text link
    The pressure-dependent relation between Eu valence and lattice structure in model compound EuO is studied with synchrotron-based x-ray spectroscopic and diffraction techniques. Contrary to expectation, a 7% volume collapse at \approx 45 GPa is accompanied by a reentrant Eu valence transition into a \emph{lower} valence state. In addition to highlighting the need for probing both structure and electronic states directly when valence information is sought in mixed-valent systems, the results also show that widely used bond-valence methods fail to quantitatively describe the complex electronic valence behavior of EuO under pressure.Comment: 5 pages, 4 figure
    corecore