67 research outputs found

    U-Pb and 207Pb-206Pb Ages of Zircons from Polymict Eucrites and Howardites.

    Get PDF
    第2回極域科学シンポジウム/第34回南極隕石シンポジウム 11月18日(金) 国立国語研究所 2階講

    LU-HF Age of Martian Meteorite Larkman Nunatek 06319

    Get PDF
    Lu-Hf isotopic data were collected on mineral separates and bulk rock powders of LAR 06319, yielding an age of 197+/- 29 Ma. Sm-Nd isotopic data and in-situ LA-ICP-MS data from a thin section of LAR 06319 are currently being collected and will be presented at the 2009 LPSC. These new data for LAR 06319 extend the existing data set for the enriched shergottite group. Martian meteorites represent the only opportunity for ground truth investigation of the geochemistry of Mars [1]. At present, approximately 80 meteorites have been classified as Martian based on young ages and distinctive isotopic signatures [2]. LAR 06319 is a newly discovered (as part of the 2006 ANSMET field season) martian meteorite that represents an important opportunity to further our understanding of the geochemical and petrological constraints on the origin of Martian magmas. Martian meteorites are traditionally categorized into the shergottite, nakhlite, and chassignite groups. The shergottites are further classified into three distinct isotopic groups designated depleted, intermediate, and enriched [3,4] based on the isotope systematics and compositions of their source(s)

    LU-HF Age and Isotope Systematics of ALH84001

    Get PDF
    Allan Hills (ALH) 84001 is an orthopyroxenite that is unique among the Martian meteorites in having the oldest inferred crystallization age (approx..4.5 to 4.0 Gyr) [e.g., 1-6 and references therein 7]. Its ancient origin makes this stone a critical constraint on early history of Mars, in particular the evolution of different planetary crust and mantle reservoirs. However, because there is significant variability in reported crystallization ages, determination of initial isotope compositions is imprecise making assessment of planetary reservoirs difficult. Here we report a new Lu-Hf mineral isochron age, initial Hf-176/Hf-177 isotope composition, and inferred Martian mantle source compositions for ALH84001 that place constraints on longlived source reservoirs for the enriched shergottite suite of Martian meteorites including Shergotty, Zagami, NWA4468, NWA856, RBT04262, LAR06319, and Los Angeles. Sm-Nd isotope analyses are under way for the same mineral aliquots analyzed for Lu-Hf. The Lu-Hf system was utilized because Lu and Hf are both lithophile and refractory and are not easily redistributed during short-lived thermal pulses associated with shock metamorphism. Moreover, chromite has relatively modest Hf concentrations with very low Lu/Hf ratios [9] yielding tight constraints on initial Hf-176/Hf-177 isotope composition

    Effect of Silicon on Activity Coefficients of P, Bi, Cd, Sn, and Ag in Liquid Fe-Si, and Implications for Core Formation

    Get PDF
    Cores of differentiated bodies (Earth, Mars, Mercury, Moon, Vesta) contain light elements such as S, C, Si, and O. We have previously measured small effects of Si on Ni and Co, and larger effects on Mo, Ge, Sb, As metal/silicate partitioning. The effect of Si on metal-silicate partitioning has been quantified for many siderophile elements, but there are a few key elements for which the effects are not yet quantified. Here we report new experiments designed to quantify the effect of Si on the partitioning of Bi, Cd, Sn, Ag, and P between metal and silicate melt. The results will be applied to Earth, Mars, Moon, and Vesta, for which we have good constraints on the mantle Bi, Cd, Sn, Ag, and P concentrations from mantle and/or basalt samples

    In Situ Chemical Characterization of Mineral Phases in Lunar Granulite Meteorite Northwest Africa 5744

    Get PDF
    Northwest Africa (NWA) 5744 meteorite is a granulitic and troctolitic lunar breccia which may represent nearly pristine lunar crust (Fig. 1). NWA 5744 is unusually magnesian compared to other lunar breccias, with bulk [Mg/(Mg+Fe)] ~ 0.79 [1, 2]. Inspection shows impactor content is likely to be very minor, with low Ni content and a lack of metal grains. Some terrestrial contamination is present, evidenced by calcite within cracks. NWA 5744 has notably low concentrations of incompatible trace elements (ITEs) [2]. The goal of this study is to attempt to classify this lunar granulite through analyses of in situ phases

    The Petrology and Geochemistry of Feldspathic Granulitic Breccia NWA 3163: Implications for the Lunar Crust

    Get PDF
    Lunar meteorites are crucial to understand the Moon s geological history because, being samples of the lunar crust that have been ejected by random impact events, they potentially originate from areas outside the small regions of the lunar surface sampled by the Apollo and Luna missions. The Apollo and Luna sample sites are contained within the Procellarum KREEP Terrain (PKT, Jolliff et al., 2000), where KREEP refers to potassium, rare earth element, and phosphorus-rich lithologies. The KREEP-rich rocks in the PKT are thought to be derived from late-stage residual liquids after approx.95-99% crystallization of a lunar magma ocean (LMO). These are understood to represent late-stage liquids which were enriched in incompatible trace elements (ITE) relative to older rocks (Snyder et al., 1992). As a consequence, the PKT is a significant reservoir for Th and KREEP. However, the majority of the lunar surface is likely to be significantly more depleted in ITE (84%, Jolliff et al., 2000). Lunar meteorites that are low in KREEP and Th may thus sample regions distinct from the PKT and are therefore a valuable source of information regarding the composition of KREEP-poor lunar crust. Northwest Africa (NWA) 3163 is a thermally metamorphosed ferroan, feldspathic, granulitic breccia composed of igneous clasts with a bulk anorthositic, noritic bulk composition. It is relatively mafic (approx.5.8 wt.% FeO; approx.5 wt.% MgO) and has some of the lowest concentrations of ITEs (17ppm Ba) compared to the feldspathic lunar meteorite (FLM) and Apollo sample suites (Hudgins et al., 2011). Localized plagioclase melting and incipient melting of mafic minerals require localized peak shock pressures in excess of 45 GPa (Chen and El Goresy, 2000; Hiesinger and Head, 2006). NWA 3163, and paired samples NWA 4481 and 4883, have previously been interpreted to represent an annealed micro-breccia which was produced by burial metamorphism at depth in the ancient lunar crust (Fernandes et al., 2009). This is in contrast to the interpretation of Hudgins et al. (2009) where NWA 3163 was interpreted to have formed through contact metamorphism. To further constrain its origin, we examine the petrogenesis of NWA 3163 with a particular emphasis on in-situ measurement of trace elements within constituent minerals, Sm-Nd and Rb-Sr isotopic systematics on separated mineral fractions and petrogenetic modeling

    Petrology and Mineral Chemistry of New Olivine-Phyric Shergottite RBT04262

    Get PDF
    RBT04262 was found by the 2004-2005 ANSMET team at the Roberts Massif in Antarctica. It is paired with RBT04261 and is classified as an olivine-phyric shergottite. RBT04261 is 4.0 x 3.5 x 2.5 cm and 78.8 g, and RBT04262 is 6.5 x 5.5 x 3.5 cm and 204.6 g. Both were partially covered by a fusion crust [1]. Chemical analysis and mapping of this meteorite was performed using the Cameca SX100 electron microprobe at NASA Johnson Space Center

    New Martian Meteorite Is One of the Most Oxidized Found to Date

    Get PDF
    As of 2013, about 60 meteorites from the planet Mars have been found and are being studied. Each time a new Martian meteorite is found, a wealth of new information comes forward about the red planet. The most abundant type of Martian meteorite is a shergottite; its lithologies are broadly similar to those of Earth basalts and gabbros; i.e., crustal igneous rocks. The entire suite of shergottites is characterized by a range of trace element, isotopic ratio, and oxygen fugacity values that mainly reflect compositional variations of the Martian mantle from which these magmas came. A newly found shergottite, NWA 5298, was the focus of a study performed by scientists within the Astromaterials Research and Exploration Science (ARES) Directorate at the Johnson Space Center (JSC) in 2012. This sample was found in Morocco in 2008. Major element analyses were performed in the electron microprobe (EMP) laboratory of ARES at JSC, while the trace elements were measured at the University of Houston by laser inductively coupled plasma mass spectrometry (ICPMS). A detailed analysis of this stone revealed that this meteorite is a crystallized magma that comes from the enriched end of the shergottite spectrum; i.e., trace element enriched and oxidized. Its oxidation comes in part from its mantle source and from oxidation during the magma ascent. It represents a pristine magma that did not mix with any other magma or see crystal accumulation or crustal contamination on its way up to the Martian surface. NWA 5298 is therefore a direct, albeit evolved, melt from the Martian mantle and, for its lithology (basaltic shergottite), it represents the oxidized end of the shergottite suite. It is thus a unique sample that has provided an end-member composition for Martian magmas

    In Situ Trace Element Analysis of an Allende Type B1 CAI: EK-459-5-1

    Get PDF
    Variations in refractory major and trace element composition of calcium, aluminum-rich inclusions (CAIs) provide constraints on physical and chemical conditions and processes in the earliest stages of the Solar System. Previous work indicates that CAIs have experienced complex histories involving, in many cases, multiple episodes of condensation, evaporation, and partial melting. We have analyzed major and trace element abundances in two core to rim transects of the melilite mantle as well as interior major phases of a Type B1 CAI (EK-459-5-1) from Allende by electron probe micro-analyzer (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to investigate the behavior of key trace elements with a primary focus on the REEs Tm and Yb

    Reassessing the Formation of CK7 Northwest Africa (NWA) 8186

    Get PDF
    The classification of meteorites is commonly determined using isotopes, modal mineralogy, and bulk compositions [1]. Bulk rare earth elements (REEs) in meteorites are additionally utilized to understand parent body processes. Numerous authors have shown that chondritic groups exhibit REE patterns that may be attributable to their parent bodies [e.g. 2-4], and variations in abundances and concentrations of REEs may reflect early nebular processes, thermal metamorphism, and aqueous alteration on the parent body [5-6]
    corecore