25 research outputs found

    A Modeling and Experiment Framework for the Emergency Management in AHC Transmission

    Get PDF
    Emergency management is crucial to finding effective ways to minimize or even eliminate the damage of emergent events, but there still exists no quantified method to study the events by computation. Statistical algorithms, such as susceptible-infected-recovered (SIR) models on epidemic transmission, ignore many details, thus always influencing the spread of emergent events. In this paper, we first propose an agent-based modeling and experiment framework to model the real world with the emergent events. The model of the real world is called artificial society, which is composed of agent model, agent activity model, and environment model, and it employs finite state automata (FSA) as its modeling paradigm. An artificial campus, on which a series of experiments are done to analyze the key factors of the acute hemorrhagic conjunctivitis (AHC) transmission, is then constructed to illustrate how our method works on the emergency management. Intervention measures and optional configurations (such as the isolation period) of them for the emergency management are also given through the evaluations in these experiments

    KD-ACP: A Software Framework for Social Computing in Emergency Management

    Get PDF
    This paper addresses the application of a computational theory and related techniques for studying emergency management in social computing. We propose a novel software framework called KD-ACP. The framework provides a systematic and automatic platform for scientists to study the emergency management problems in three aspects: modelling the society in emergency scenario as the artificial society; investigating the emergency management problems by the repeat computational experiments; parallel execution between artificial society and the actual society managed by the decisions from computational experiments. The software framework is composed of a series of tools. These tools are categorized into three parts corresponding to โ€œA,โ€ โ€œC,โ€ and โ€œP,โ€ respectively. Using H1N1 epidemic in Beijing city as the case study, the modelling and data generating of Beijing city, experiments with settings of H1N1, and intervention measures and parallel execution by situation tool are implemented by KD-ACP. The results output by the software framework shows that the emergency response decisions can be tested to find a more optimal one through the computational experiments. In the end, the advantages of the KD-ACP and the future work are summarized in the conclusion
    corecore