3,422 research outputs found
Commentary on Sood et al.: "Cochrane systematic reviews in acupuncture: Methodological diversity in database searching"
published_or_final_versio
Community Resources Addressing Peripartum Depression
Peripartum mood disorders affect a large proportion of new mothers as well as their families, partners, and support systems. This project aims to provide patients with information about peripartum mood disorders as part of their initial prenatal packet. Also included are a list of local community resources specifically addressing peripartum mood disorders for patients seeking additional support outside of their primary care office.https://scholarworks.uvm.edu/fmclerk/1882/thumbnail.jp
2QAN: A quantum compiler for 2-local qubit Hamiltonian simulation algorithms
Simulating quantum systems is one of the most important potential applications of quantum computers. The high-level circuit defning the simulation needs to be compiled into one that complies with hardware limitations such as qubit architecture (connectivity) and instruction (gate) set. General-purpose quantum compilers work at the gate level and have little knowledge of the mathematical properties of quantum applications, missing further optimization opportunities. Existing application-specifc compilers only apply advanced optimizations in the scheduling procedure and are restricted to the CNOT or CZ gate set. In this work, we develop a compiler, named 2QAN, to optimize quantum circuits for 2-local qubit Hamiltonian simulation problems, a framework which includes the important quantum approximate optimization algorithm (QAOA). In particular, we exploit the flexibility of permuting different operators in the Hamiltonian (no matter whether they commute) and propose permutation-aware techniques for qubit routing, gate optimization and scheduling to minimize compilation overhead. 2QAN can target different architectures and different instruction sets. Compilation results on four applications (up to 50 qubits) and three quantum computers (namely, Google Sycamore, IBMQ Montreal and Rigetti Aspen) show that 2QAN outperforms state-of-theart general-purpose compilers and application-specifc compilers. Specifcally, 2QAN can reduce the number of inserted SWAP gates by 11.5X, reduce overhead in hardware gate count by 68.5X, and reduce overhead in circuit depth by 21X. Experimental results on the Montreal device demonstrate that benchmarks compiled by 2QAN achieve the highest fdelity
Hitting spheres on hyperbolic spaces
For a hyperbolic Brownian motion on the Poincar\'e half-plane ,
starting from a point of hyperbolic coordinates inside a
hyperbolic disc of radius , we obtain the probability of
hitting the boundary at the point . For
we derive the asymptotic Cauchy hitting distribution on
and for small values of and we
obtain the classical Euclidean Poisson kernel. The exit probabilities
from a hyperbolic annulus in
of radii and are derived and the transient
behaviour of hyperbolic Brownian motion is considered. Similar probabilities
are calculated also for a Brownian motion on the surface of the three
dimensional sphere.
For the hyperbolic half-space we obtain the Poisson kernel of
a ball in terms of a series involving Gegenbauer polynomials and hypergeometric
functions. For small domains in we obtain the -dimensional
Euclidean Poisson kernel. The exit probabilities from an annulus are derived
also in the -dimensional case
Recommended from our members
Polyamide Nanocomposites for Selective Laser Sintering
Current polyamide 11 and 12 are lacking in fire retardancy and high strength/high
heat resistance characteristics for a plethora of finished parts that are desired and required
for performance driven applications. It is anticipated that nanomodification of polyamide
11 and 12 will result in enhanced polymer performance, i.e., fire retardancy, high strength
and high heat resistance for polyamide 11 and 12. It is expected that these findings will
expand the market opportunities for polyamide 11 and 12 resin manufacturers.
The objective of this research is to develop improved polyamide 11 and 12 polymers
with enhanced flame retardancy, thermal, and mechanical properties for selective laser
sintering (SLS) rapid manufacturing (RM). A nanophase was introduced into the
polyamide 11 and 12 via twin screw extrusion to provide improved material properties of
the polymer blends. Arkema RILSAN® polyamide 11 molding polymer pellets and
Degussa VESTAMID® L1670 polyamide 12 were examined with three types of
nanoparticles: chemically modified montmorillonite (MMT) organoclays, surface
modified nanosilica, and carbon nanofibers (CNFs) to create polyamide 11 and 12
nanocomposites.
Wide angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM)
were used to determine the degree of dispersion. Injection molded test specimens were
fabricated for physical, thermal, mechanical properties, and flammability tests. Thermal
stability of these polyamide 11 and 12 nanocomposites was examined by TGA.
Mechanical properties such as tensile, flexural, and elongation at break were measured.
Flammability properties were also obtained using the Cone Calorimeter at an external
heat flux of 50 kW/m2. TEM micrographs, physical, mechanical, and flammability
properties are included in the paper. Polyamide 11 and 12 nanocomposites properties are
compared with polyamide 11 and 12 baseline polymers. Based on flammability and
mechanical material performance, selective polymers including polyamide 11
nanocomposites and control polyamide 11 were cryogenically ground into fine powders
and fabricated into SLS parts.Mechanical Engineerin
A New Partnership: The Society for Acupuncture Research and the Journal of Alternative and Complementary Medicine
published_or_final_versio
Semantic analysis of field sports video using a petri-net of audio-visual concepts
The most common approach to automatic summarisation and highlight detection in sports video is to train an automatic classifier to detect semantic highlights based on occurrences of low-level features such as action replays, excited commentators or changes in a scoreboard. We propose an alternative approach based on the detection of perception concepts (PCs) and the construction of Petri-Nets which can be used for both semantic description and event detection within sports videos. Low-level algorithms for the detection of perception concepts using visual, aural and motion characteristics are proposed, and a series of Petri-Nets composed of perception concepts is formally defined to describe video content. We call this a Perception Concept Network-Petri Net (PCN-PN) model. Using PCN-PNs, personalized high-level semantic descriptions of video highlights can be facilitated and queries on high-level semantics can be achieved. A particular strength of this framework is that we can easily build semantic detectors based on PCN-PNs to search within sports videos and locate interesting events. Experimental results based on recorded sports
video data across three types of sports games (soccer, basketball and rugby), and each from multiple broadcasters, are used to illustrate the potential of this framework
Mid-infrared photodetectors operating over an extended wavelength range up to 90 K
We report a wavelength threshold extension, from the designed value of 3.1 to 8.9 μm, in a -type heterostructure photodetector. This is associated with the use of a graded barrier and barrier offset, and arises from hole–hole interactions in the detector absorber. Experiments show that using long-pass filters to tune the energies of incident photons gives rise to changes in the intensity of the response. This demonstrates an alternative approach to achieving tuning of the photodetector response without the need to adjust the characteristic energy that is determined by the band structure
Recommended from our members
Designing calibration and expressivity-efficient instruction sets for quantum computing
Near-term quantum computing (QC) systems have limited qubit counts, high gate (instruction) error rates, and typically support a minimal instruction set having one type of two-qubit gate (2Q). To reduce program instruction counts and improve application expressivity, vendors have proposed, and shown proof-of-concept demonstrations of richer instruction sets such as XY gates (Rigetti) and fSim gates (Google). These instruction sets comprise of families of 2Q gate types parameterized by continuous qubit rotation angles. That is, it allows a large set of different physical operations to be realized on the qubits, based on the input angles. However, having such a large number of gate types is problematic because each gate type has to be calibrated periodically, across the full system, to obtain high fidelity implementations. This results in substantial recurring calibration overheads even on current systems which use only a few gate types. Our work aims to navigate this tradeoff between application expressivity and calibration overhead, and identify what instructions vendors should implement to get the best expressivity with acceptable calibration time.Studying this tradeoff is challenging because of the diversity in QC application requirements, the need to optimize applications for widely different hardware gate types and noise variations across gate types. Therefore, our work develops NuOp, a flexible compilation pass based on numerical optimization, to efficiently decompose application operations into arbitrary hardware gate types. Using NuOp and four important quantum applications, we study the instruction set proposals of Rigetti and Google, with realistic noise simulations and a calibration model. Our experiments show that implementing 4-8 types of 2Q gates is sufficient to attain nearly the same expressivity as a full continuous gate family, while reducing the calibration overhead by two orders of magnitude. With several vendors proposing rich gate families as means to higher fidelity, our work has potential to provide valuable instruction set design guidance for near-term QC systems
- …