6 research outputs found

    Parameter design of coal pillar in highwall mining under action of dynamic-static load

    Get PDF
    In view of the application of end slope shearer mining technology to recover a large amount of residual coal, the determination of reasonable width of supporting coal pillar is a key factor whether it can be safely and efficiently popularization and application, especially considering the influence of blasting vibration on the stability of supporting coal pillar. Based on the southern end slope at the open-pit coal mine of Pingshuo, field vibration test, theoretical analysis and numerical calculation were used to study the web pillar stability in open-pit highwall mining and its parameter design under the action of triangular load and blasting vibration on the side slope. Based on the theory of limit balance and the mutation theory, the stress distribution at the coal pillar was analyzed, combined with Mohr-Coulomb failure criterion. Besides, the ultimate strength function expression of coal pillar under the influence of mining height, mining width, load stress of overlying strata, cohesion and internal friction angle of coal pillar is established. The calculation formula of the maximum allowable plastic zone width and rational width of web pillar under different safety reserve factor conditions are established. The three-dimensional simple harmonic vibration response model of the supported coal pillar was established, and the blasting parameters such as the amount of single shot, elevation difference and horizontal distance of the blast center were studied on the response of the maximum instantaneous dynamic stress of the coal pillar, which revealed the influence mechanism of the blasting dynamic load effect on the width and stability of the plastic zone of the supported coal pillar and proposed the design method of the parameters of the supported coal pillar under the blasting dynamic load. The results show that the blasting vibration has a greater influence on the stability of coal pillar, and the instantaneous maximum dynamic stress response of coal pillar under the blasting dynamic load is positively correlated with the amount of single shot, and negatively correlated with the elevation difference and horizontal distance. With the increase of the maximum instantaneous dynamic stress response of coal pillar, the width of plastic zone of coal pillar increases proportionally, and the safety factor of coal pillar decays in an approximately linear pattern. The width of coal pillar under dynamic-static load is determined to be 5 m, and its reasonableness is verified by engineering practice

    Sedimentary characteristics and controlling factors of the Ba 66 fan in Bayindulan Sag

    No full text
    Based on the data of core, thin sections, logging and 3D seismic, the sedimentary characteristics, controlling factors and sedimentary model of Ba 66 fan are studied systematically to determine the types and characteristics of the fan.The study shows that Ba 66 fan is a fan delta rapidly deposited by torrent after short-distance transport, and the hydrodynamic force of the fan is mainly driven by gravity.The extension distance of the fan is short on the plane.The fan is lobate as a whole and has the facies feature of " large plain, small front".The main characteristics of the fan are as follows: the maturity of the rock is low, and the disorderly massive glutenite is the typical lithofacies; The fan has the logging characteristics of high amplitude, odonation and abrupt contact.The fan bodies can be divided into plain, front (including proximal, middle and distal), pre-delta or lacustrine facies according to the characteristics of seismic facies, such as random hills, front accumulations, and sheets.The analysis shows that the development of fan delta in the slope belt is mainly controlled by the background environment of the depression and paleogeomorphology: ①The background conditions such as source of uplift area, narrow lake basin (no gentle slope) and wide lake surface ensure the supply of source and short-distance transportation conditions for the formation of fan delta; ②Grooves provide space for sand body development. The slope break changes the slope, divides the accommodation space, and controls the distribution of facies, and the low bulge under the water affects the plane distribution of the fan.Finally, the deposition model of Ba 66 fan is constructed

    Reservoir controlling differences between consequent faults and antithetic faults in slope area outside of source: A case study of the south-central Wenan slope of Jizhong Depression, Bohai Bay Basin, East China

    No full text
    The control effects of different occurrence faults on oil and gas accumulation and distribution in the outer slope area of oil and gas reservoirs were studied taking the south-central Wen'an slope of the Jizhong depression in the Bohai Bay Basin as an example. Based on 3D seismic data and the distribution of oil and water, the controlling differences between consequent fault and antithetic fault were analyzed and compared from the formation and evolution rule of faults and the formation mechanism of fault traps, including development positions of the consequent fault traps and antithetic fault traps, oil and gas distribution horizon adjusted by fault and formation period of fault traps. The differences between consequent faults and antithetic faults in controlling reservoirs have three main aspects: (1) Consequent fault traps and antithetic fault traps are in different positions, the consequent fault traps are at the segmented growing point in the hanging wall of “hard-linkage” faults, while the antithetic fault traps are developed in the position with the largest throw in the footwall because of tilting action; (2) The two kinds of faults result in different oil and gas distribution vertically, oil and gas adjusted by consequent faults is distributed in a single layer or multi-layers, while oil and gas adjusted by antithetic faults occur in single layers; (3) The two kinds of fault traps are formed in different periods, the consequent fault traps are formed at the time when the related faults enter the stage of “hard-linkage”, while the antithetic fault traps are formed at the beginning of the fault active period. Key words: Bohai Bay Basin, Jizhong depression, slope area outside of source, consequent fault, antithetic fault, fault trap, transverse anticline, fault controlling hydrocarbon accumulatio

    Paleoenvironment and Organic Characterization of the Lower Cretaceous Lacustrine Source Rocks in the Erlian Basin: The Influence of Hydrothermal and Volcanic Activity on the Source Rock Quality

    No full text
    Lower Cretaceous lacustrine source rocks in the Erlian Basin are highly heterogeneous. It is important to assess and explain these heterogeneities for the reconstruction of paleoenvironments and the prediction of high-quality source rock distributions. In this study, well-logging, organic, and elemental geochemical data were comprehensively analyzed for the source rocks of Member 4 of the Aershan Formation (Fm) and Member 1 of the Tengger Fm in the southern Bayindulan (BNAN), southern Wulanhua (WLHs), Anan, Aer, and southern Wuliyasitai sags of the Erlian Basin. The variability in sedimentary environments, sources of organic matter of the source rocks in different sags, and the influence of hydrothermal and volcanic activity on the source rock quality in the Erlian Basin were assessed. The results reveal that the source rocks can be divided into four types of organic facies (A, B, BC, and C). Organic facies A–B present hydrogen indices (HIs) higher than 400 mg/g and are mainly composed of mudstone and thick (average thickness >50 m) dolomitic mudstone, with biomarkers characterized by a Pr/Ph ratio lower than 1.0, a gammacerane/C30 hopane (Gam/C30H) ratio higher than 0.2, and a C19 tricyclic terpane/C23 tricyclic terpane (C19/C23TT) ratio lower than 0.6. Organic facies BC–C are composed of mudstone with an HI < 400 mg/g, with biomarkers characterized by a Pr/Ph ratio higher than 0.8, a Gam/C30H ratio lower than 0.2, a C19/C23TT ratio higher than 0.6, and a sterane/hopane ratio lower than 0.4. Dolomitic mudstone belonging to organic facies A–B is mainly developed in the BNAN, WLHs, and Anan sag and is characterized by a fault-controlled distribution in the sag, a right-declined rare earth element pattern, and an enrichment in the elements of Ba, Cu, Zn, Fe, and Ni. The genesis of high HI dolomitic mudstone is associated with hydrothermal and volcanic activity because the hydrothermal fluid or hydrolysis of volcanic ash result in increasing input of reducing gas and soluble nutrient ions, thus promoting the formation of anoxic and saline Cretaceous lakes with high primary productivity

    Table1_Reservoir characteristics and factors influencing shahejie marl in the shulu sag, bohai bay basin, eastern China.XLSX

    No full text
    Shahejie marl in the Shulu Sag is a crucial resource for unconventional hydrocarbon exploration in China. Although breakthroughs have been made in tight oil exploration in this area, the mechanisms underlying the formation of this marl reservoir and factors controlling its ‘sweet spots’ have not been thoroughly studied. To understand the pore structure characteristics and factors influencing the marl reservoir, we analyzed core samples from Wells ST1 and ST3. A series of experiments was conducted on the samples, such as X-ray diffraction, focused ion beam scanning electron microscopy, micro-CT, and total organic carbon test. Additionally, the physical properties of different marl rock fabrics were studied with auxiliary tests, such as mercury intrusion capillary pressure analyses, nuclear magnetic resonance, porosity and permeability tests, and thin-section observation. The results revealed that the marl reservoir is characterized by low porosity (1.61%) and low permeability (2.56mD). The porosity and permeability (1.61% and 3.26mD) of laminated marl were better than those (0.92% and 1.68mD) of massive marl. Clay minerals and quartz content in laminated (11.8 and 8.2%) was less than in massive marl (16.2 and 13.3%). The marl pores include intercrystalline pores, dissolution pores, and microfractures. Additionally, the laminated marl pores were primarily distributed along the dark lamina, with good connectivity. A few isolated and uniform holes were observed in the massive marl. Influenced by rock fabric and mineral composition, layered fractures were mainly developed in the laminated marl, while structural fractures were the main type of microfractures in the massive marl. The primary sedimentary mechanism was the main geological action underlying the differences in marl rock fabric; this mechanism affects the physical properties of the marl reservoir, which are key factors to be considered when searching for the marl reservoir ‘sweet spots’. Particular attention should be paid to these factors during tight oil exploration and development in similar sedimentary basins.</p
    corecore