671 research outputs found

    Through a Lattice Darkly -- Shedding Light on Electron-Phonon Coupling in the High Tc_c Cuprates

    Get PDF
    With its central role in conventional BCS superconductivity, electron-phonon coupling has appeared to play a more subtle role in the phase diagram of the high temperature superconducting cuprates. The added complexity of the cuprates with potentially numerous competing phases including charge, spin, orbital, and lattice ordering, makes teasing out any unique phenomena challenging. In this review, we present our work using angle resolved photoemission spectroscopy (ARPES) to explore the role of the lattice and its effect on the valence band electronic structure in the cuprates. We provide an introduction to the ARPES technique and its unique ability to the probe the effect of bosonic renormalization (or "kink") on the near-EF_F band structure. Our survey begins with the establishment of the ubiquitous nodal cuprate kink leading to the way isotope substitution has shed a critical new perspective on the role and strength of electron-phonon coupling. We continue with recently published work on the connection between the phonon dispersion as seen with inelastic x-ray scattering (IXS) and the location of the kink as observed by ARPES near the nodal point. Finally, we present very recent and ongoing ARPES work examining how induced strain through chemical pressure provides a potentially promising avenue for understanding the broader role of the lattice to the superconducting phase and larger cuprate phase diagram.Comment: 17 pages, 20 figures, Review Articl

    Ultrafast Angle-Resolved Photoemission Spectroscopy of Quantum Materials

    Full text link
    Techniques in time- and angle-resolved photoemission spectroscopy have facilitated a number of recent advances in the study of quantum materials. We review developments in this field related to the study of incoherent nonequilibrium electron dynamics, the analysis of interactions between electrons and collective excitations, the exploration of dressed-state physics, and the illumination of unoccupied band structure. Future prospects are also discussed.Comment: 7 pages, 6 figure

    Crossover from inelastic magnetic scattering of Cooper pairs to spin-wave dispersion produces low-energy kink in cuprates

    Full text link
    We present GW based self-energy calculations for the state of coexisting spin-density wave and d-wave superconductivity in a series of cuprate superconductors. In these systems, the spin resonance spectrum exhibits the typical `hour-glass' form, whose upward and downward dispersion branches come from the gapped spin-wave and magnetic scattering of Cooper pairs, respectively. We show that the crossover between these two different dispersion features leads to an abrupt change in slope in the quasiparticle self-energy, and hence the low-energy kink commences in the single-particle quasiparticle spectrum. The calculated electron-bosonic coupling strength agrees well with experimental data as a function of temperature, doping and material. The results demonstrate that the electronic correlations dominate the quasiparticle spectra of cuprates near the low-energy kink, suggesting a relatively smaller role for phonons in this energy range.Comment: 8 pages, 6 figures. revised version submitted to PR

    Quasi-Freestanding Multilayer Graphene Films on the Carbon Face of SiC

    Full text link
    The electronic band structure of as-grown and doped graphene grown on the carbon face of SiC is studied by high-resolution angle-resolved photoemission spectroscopy, where we observe both rotations between adjacent layers and AB-stacking. The band structure of quasi-freestanding AB- bilayers is directly compared with bilayer graphene grown on the Si-face of SiC to study the impact of the substrate on the electronic properties of epitaxial graphene. Our results show that the C-face films are nearly freestanding from an electronic point of view, due to the rotations between graphene layers.Comment: http://link.aps.org/doi/10.1103/PhysRevB.81.24141

    <i>d</i>-wave superconductivity from electron-phonon interactions

    Get PDF
    I examine electron-phonon mediated superconductivity in the intermediate coupling and phonon frequency regime of the quasi-two-dimensional Holstein model. I use an extended Migdal-Eliashberg theory that includes vertex corrections and spatial fluctuations. I find a d-wave superconducting state that is unique close to half filling. The order parameter undergoes a transition to s-wave superconductivity on increasing filling. I explain how the inclusion of both vertex corrections and spatial fluctuations is essential for the prediction of a d-wave order parameter. I then discuss the effects of a large Coulomb pseudopotential on the superconductivity (such as is found in contemporary superconducting materials like the cuprates), which results in the destruction of the s-wave states, while leaving the d-wave states unmodified
    • …
    corecore