225 research outputs found
MiR-205-5p inhibition by locked nucleic acids impairs metastatic potential of breast cancer cells
Mir-205 plays an important role in epithelial biogenesis and in mammary gland development but its role in cancer still remains controversial depending on the specific cellular context and target genes. We have previously reported that miR-205-5p is upregulated in breast cancer stem cells targeting ERBB pathway and leading to targeted therapy resistance. Here we show that miR-205-5p regulates tumorigenic properties of breast cancer cells, as well as epithelial to mesenchymal transition. Silencing this miRNA in breast cancer results in reduced tumor growth and metastatic spreading in mouse models. Moreover, we show that miR-205-5p knock-down can be obtained with the use of specific locked nucleic acids oligonucleotides in vivo suggesting a future potential use of this approach in therapy
The Link Among Neurological Diseases: Extracellular Vesicles as a Possible Brain Injury Footprint
Extracellular vesicles (EVs), referred as membranous vesicles released into body fluids from all cell types, represent a novel model to explain some aspects of the inter-cellular cross talk. It has been demonstrated that the EVs modify the phenotype of target cells, acting through a large spectrum of mechanisms. In the central nervous system, the EVs are responsible of the wide range of physiological processes required for normal brain function and neuronal support, such as immune signaling, cellular proliferation, differentiation, and senescence. Growing evidences link the EV functions to the pathogenic machinery of the neurological diseases, contributing to the disease progression and spreading. Extracellular vesicles are involved in the brain injury by multimodal ways; they propagate inflammation across the blood brain barrier (BBB), mediate neuroprotection and modulate regenerative processes. For these reasons, extracellular vesicles represent a promising biomarker in neurological disorders as well as an interesting starting point for the development of novel therapeutic strategies. Herein, we review the role of the EVs in the pathogenesis of neurological disease, discussing their potential clinical applications
A Protective Strategy to Counteract the Oxidative Stress Induced by Simulated Microgravity on H9C2 Cardiomyocytes
Microgravity affects human cardiovascular function inducing heart rhythm disturbances and even cardiac atrophy. The mechanisms triggered by microgravity and the search for protection strategies are difficult to be investigated in vivo. This study is aimed at investigating the effects induced by simulated microgravity on a cardiomyocyte-like phenotype. The Random Positioning Machine (RPM), set in a CO2 incubator, was used to simulate microgravity, and H9C2 cell line was used as the cardiomyocyte-like model. H9C2 cells were exposed to simulated microgravity up to 96 h, showing a slower cell proliferation rate and lower metabolic activity in comparison to cell grown at earth gravity. In exposed cells, these effects were accompanied by increased levels of intracellular reactive oxygen species (ROS), cytosolic Ca2+, and mitochondrial superoxide anion. Protein carbonyls, markers of protein oxidation, were significantly increased after the first 48 h of exposition in the RPM. In these conditions, the presence of an antioxidant, the N-acetylcysteine (NAC), counteracted the effects induced by the simulated microgravity. In conclusion, these data suggest that simulated microgravity triggers a concomitant increase of intracellular ROS and Ca2+ levels and affects cell metabolic activity which in turn could be responsible for the slower proliferative rate. Nevertheless, the very low number of detectable dead cells and, more interestingly, the protective effect of NA, demonstrate that simulated microgravity does not have "an irreversible toxic effect"but, affecting the oxidative balance, results in a transient slowdown of proliferation
Microplastics Affect the Inflammation Pathway in Human Gingival Fibroblasts: A Study in the Adriatic Sea
The level of environmental microplastics in the sea is constantly increasing. They can enter the human body with food, be absorbed through the gut and have negative effects on the organism’s health after its digestion. To date, microplastics (MPs) are considered new environmental pollutants in the air sea and they are attracting wide attention. The possible toxic effects of MPs isolated at different sea depths of 1, 24 and 78 m were explored in an in vitro model of human gingival fibroblasts (hGFs). MPs isolated from the sea showed different size and were then divided into different sample groups: 1, 24 and 78 m. The results obtained revealed that MPs are able to activate the inflammatory pathway NFkB/MyD88/NLRP3. In detail, the exposure to MPs from 1 and 78 m led to increased levels of inflammatory markers NFkB, MyD88 and NLRP3 in terms of proteins and gene expression. Moreover, cells exposed to MPs showed a lower metabolic activity rate compared to unexposed cells. In conclusion, these findings demonstrate that the inflammation process is stimulated by MPs exposure, providing a new perspective to better understand the intracellular mechanism
Targeting Interleukin(IL)-30/IL-27p28 signaling in cancer stem-like cells and host environment synergistically inhibits prostate cancer growth and improves survival
Endogenous PCSK9 may influence circulating CD45neg/CD34bright and CD45neg/CD34bright/CD146neg cells in patients with type 2 diabetes mellitus
Protease proprotein convertase subtilisin/kexin type 9 (PCSK9) is a regulator of LDL cholesterol clearance and has been associated with cardiovascular risk. PCSK9 inhibitors increase in vivo circulating endothelial progenitor cells (EPCs), a subtype of immature cells involved in ongoing endothelial repair. We hypothesized that the effect of PCSK9 on vascular homeostasis may be mediated by EPCs in patients with or without type 2 diabetes mellitus (T2DM). Eighty-two patients (45 with, 37 without T2DM) at high cardiovascular risk were enrolled in this observational study. Statin treatment was associated with higher circulating levels of PCSK9 in patients with and without T2DM (p < 0.001 and p = 0.036) and with reduced CD45neg/CD34bright (total EPC compartment) (p = 0.016) and CD45neg/CD34bright/CD146neg (early EPC) (p = 0.040) only among patients with T2DM. In the whole group of patients, statin treatment was the only independent predictor of low number of CD45neg/CD34bright (β = − 0.230; p = 0.038, adjusted R2 = 0.041). Among T2DM patients, PCSK9 circulating levels were inversely related and predicted both the number of CD45neg/CD34bright (β = − 0.438; p = 0.003, adjusted R2 = 0.173), and CD45neg/CD34bright/CD146neg (β = − 0.458; p = 0.002, adjusted R2 = 0.191) independently of age, gender, BMI and statin treatment. In high-risk T2DM patients, high endogenous levels of PCSK9 may have a detrimental effect on EPCs by reducing the endothelial repair and worsening the progression of atherothrombosis
Interleukin-30 feeds breast cancer stem cells via CXCL10 and IL23 autocrine loops and shapes immune contexture and host outcome
Background Breast cancer (BC) progression to metastatic disease is the leading cause of death in women worldwide. Metastasis is driven by cancer stem cells (CSCs) and signals from their microenvironment. Interleukin (IL) 30 promotes BC progression, and its expression correlates with disease recurrence and mortality. Whether it acts by regulating BCSCs is unknown and could have significant therapeutic implications. Methods Human (h) and murine (m) BCSCs were tested for their production of and response to IL30 by using flow cytometry, confocal microscopy, proliferation and sphere-formation assays, and PCR array. Immunocompetent mice were used to investigate the role of BCSC-derived IL30 on tumor development and host outcome. TCGA PanCancer and Oncomine databases provided gene expression data from 1084 and 75 hBC samples, respectively, and immunostaining unveiled the BCSC microenvironment. Results hBCSCs constitutively expressed IL30 as a membrane-anchored glycoprotein. Blocking IL30 hindered their proliferation and self-renewal efficiency, which were boosted by IL30 overexpression. IL30 regulation of immunity gene expression in human and murine BCSCs shared a significant induction of IL23 and CXCL10. Both immunoregulatory mediators stimulated BCSC proliferation and self-renewal, while their selective blockade dramatically hindered IL30-dependent BCSC proliferation and mammosphere formation. Orthotopic implantation of IL30-overexpressing mBCSCs, in syngeneic mice, gave rise to poorly differentiated and highly proliferating MYC + KLF4 + LAG3 + tumors, which expressed CXCL10 and IL23, and were infiltrated by myeloid-derived cells, Foxp3 + T regulatory cells and NKp46 + RORÎ 3t + type 3 innate lymphoid cells, resulting in increased metastasis and reduced survival. In tumor tissues from patients with BC, expression of IL30 overlapped with that of CXCL10 and IL23, and ranked beyond the 95th percentile in a Triple-Negative enriched BC collection from the Oncomine Platform. CIBERSORTx highlighted a defective dendritic cell, CD4 + T and Î 3δT lymphocyte content and a prominent LAG3 expression in IL30 high versus IL30 low human BC samples from the TCGA PanCancer collection. Conclusions Constitutive expression of membrane-bound IL30 regulates BCSC viability by juxtacrine signals and via second-level mediators, mainly CXCL10 and IL23. Their autocrine loops mediate much of the CSC growth factor activity of IL30, while their paracrine effect contributes to IL30 shaping of immune contexture. IL30-related immune subversion, which also emerged from computational analyses, strongly suggests that targeting IL30 can restrain the BCSC compartment and counteract BC progression
Regulation of miR-483-3p by the O-linked N-acetylglucosamine transferase links chemosensitivity to glucose metabolism in liver cancer cells
The miR-483-3p is upregulated in several tumors, including liver tumors, where it inhibits TP53-dependent apoptosis by targeting the pro-apoptotic gene BBC3/PUMA. The transcriptional regulation of the miR-483-3p could be driven by the β-catenin/USF1 complex, independently from its host gene IGF2, and we previously demonstrated that in HepG2 hepatoblastoma cells carrying wild-type TP53 the upregulation of the miR-483-3p overcomes the antitumoral effects of the tumor-suppressor miR-145-5p by a mechanism involving cellular glucose availability. Here we demonstrate that in HepG2 cells, the molecular link between glucose concentration and miR-483-3p expression entails the O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT), which stabilizes the transcriptional complex at the miR-483 promoter. HepG2 cells showed reduced miR-483-3p expression and increased susceptibility to 5-fluorouracil (5-FU)-induced apoptosis in presence of the inhibitor of glycolysis 2-deoxy-D-glucose (2-DG). However, in vivo experiments showed that HepG2 cells with higher miR-483-3p expression were selected during tumor progression regardless of 5-FU treatment. Furthermore, treatment with 2-DG alone did not significantly reduce HepG2 xenograft load in immunodeficient mice. In conclusion, we show that in HepG2 cells glucose uptake increases the expression of the oncogenic miR-483-3p through the OGT pathway. This suggests that depletion of the miR-483-3p may be a valuable therapeutic approach in liver cancer patients, but the use of inhibitors of glycolysis to achieve this purpose could accelerate the selection of resistant neoplastic cell clones
Emerging Role of Oxidative Stress on EGFR and OGG1-BER Cross-Regulation: Implications in Thyroid Physiopathology.
Thyroid diseases have a complex and multifactorial aetiology. Despite the numerous studies on the signals referable to the malignant transition, the molecular mechanisms concerning the role of oxidative stress remain elusive. Based on its strong oxidative power, H2O2 could be responsible for the high level of oxidative DNA damage observed in cancerous thyroid tissue and hyperactivation of mitogen-activated protein kinase (MAPK) and PI3K/Akt, which mediate ErbB signaling. Increased levels of 8-oxoG DNA adducts have been detected in the early stages of thyroid cancer. These DNA lesions are efficiently recognized and removed by the base excision repair (BER) pathway initiated by 8-oxoG glycosylase1 (OGG1). This study investigated the relationships between the EGFR and OGG1-BER pathways and their mutual regulation following oxidative stress stimulus by H2O2 in human thyrocytes. We clarified the modulation of ErbB receptors and their downstream pathways (PI3K/Akt and MAPK/ERK) under oxidative stress (from H2O2) at the level of gene and protein expression, according to the mechanism defined in a human non-pathological cell system, Nthy-ori 3-1. Later, on the basis of the results obtained by gene expression cluster analysis in normal cells, we assessed the dysregulation of the relationships in a model of papillary thyroid cancer with RET/PTC rearrangement (TPC-1). Our observations demonstrated that a H2O2 stress may induce a physiological cross-regulation between ErbB and OGG1-BER pathways in normal thyroid cells (while this is dysregulated in the TPC-1 cells). Gene expression data also delineated that MUTYH gene could play a physiological role in crosstalk between ErbB and BER pathways and this function is instead lost in cancer cells. Overall, our data on OGG1 protein expression suggest that it was physiologically regulated in response to oxidative modulation of ErbB, and that these might be dysregulated in the signaling pathway involving AKT in the progression of thyroid malignancies with RET/PTC rearrangements
- …
