12 research outputs found

    Trends in Basic Sciences Education in Dental Schools, 1999–2016

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153754/1/jddjde017008.pd

    The Status of Ethics Teaching and Learning in U.S. Dental Schools

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153779/1/jddj0022033720117510tb05174x.pd

    Purification and Characterization of Two Forms of a High-Molecular-Weight Cysteine Proteinase (Porphypain) from \u3ci\u3ePorphyromonas gingivalis\u3c/i\u3e

    Get PDF
    Porphyromonas gingivalis, an organism implicated in the etiology and pathogenesis of human periodontal diseases, produces a variety of potent proteolytic enzymes, and it has been suggested that these enzymes play a direct role in the destruction of periodontal tissues. We now report that two cell-associated cysteine proteinases of P. gingivalis W12, with molecular masses of approximately 150 kDa (porphypain-1) and 120 kDa (porphypain-2), as determined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, have been separated and purified to apparent homogeneity. These proteinases appear to be SDS-stable conformational variants of a 180-kDa enzyme, and they are the largest cysteine proteinases yet purified from P. gingivalis. The purified proteinases hydrolyze fibrinogen, tosyl-Gly-L-Pro-L-Arg p-nitroanilide, and tosyl-Gly-L-Pro-L-Lys p-nitroanilide. While hydrolysis of both synthetic substrates by porphypain-1 and -2 requires activation by reducing agents, is inhibited by EDTA, and is stimulated in the presence of derivatives of glycine, the Arg-amidolytic activity is sensitive to leupeptin and H-D-tyrosyl-L-prolyl-L-arginyl chloromethyl ketone, whereas the Lys-amidolytic activity is sensitive to tosyl-L-lysyl chloromethyl ketone and insensitive to leupeptin. These data suggest that porphypains contain two types of active sites. These cell-associated P. gingivalis proteinases may contribute significantly and directly to periodontal tissue destruction

    Induction of β-Defensin Resistance in the Oral Anaerobe Porphyromonas gingivalis

    No full text
    Induction of resistance of oral anaerobes to the effects of human β-defensin 1 (hβD-1) to hβD-4 was investigated by pretreating cells with either sublethal levels of defensins or environmental factors, followed by a challenge with lethal levels of defensins. Cultures of Porphyromonas gingivalis were (i) pretreated with defensins at 1 ng/ml, (ii) heated to 42°C (heat stress), (iii) exposed to normal atmosphere (oxidative stress), or (iv) exposed to 1 mM hydrogen peroxide (peroxide stress). Samples (10 μl) were distributed among the wells of sterile 384-well plates containing hβD-1 to -4 (100 μg/ml). Plates were incubated at 37°C for 36 h in an anaerobe chamber. Growth inhibition was determined by a system that measures the total nucleic acid of a sample with a DNA binding dye. The MICs of the four defensins for P. gingivalis were 3 to 12 μg/ml. We found that sublethal levels of the defensins and heat and peroxide stress, but not oxidative stress, induced resistance to 100 μg of defensin per ml in P. gingivalis. Resistance induced by sublethal levels of hβD-2 lasted 90 min, and the resistance induced by each defensin was effective against the other three. Multiple strains exposed to hβD-2 all evidenced resistance induction. Defensin resistance is vital to the pathogenic potential of several human pathogens. This is the first report describing the induction of defensin resistance in the oral periodontal pathogen P. gingivalis. Such resistance may have an effect on the ability of oral pathogens to persist in the mouth and to withstand innate human immunity

    DNAH5 is associated with total lung capacity in chronic obstructive pulmonary disease.

    No full text

    IREB2 and GALC are associated with pulmonary artery enlargement in chronic obstructive pulmonary disease.

    No full text

    Coronal Heating as Determined by the Solar Flare Frequency Distribution Obtained by Aggregating Case Studies

    Full text link
    Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counter-intuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfv\'en waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold, α=2\alpha=2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >>600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: pre-flare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine that α=1.63±0.03\alpha = 1.63 \pm 0.03. This is below the critical threshold, suggesting that Alfv\'en waves are an important driver of coronal heating.Comment: 1,002 authors, 14 pages, 4 figures, 3 tables, published by The Astrophysical Journal on 2023-05-09, volume 948, page 7
    corecore