21 research outputs found

    Preparation, evaluation and metabolites study in rats of novel amentoflavone-loaded TPGS/soluplus mixed nanomicelles

    No full text
    Amentoflavone (AMF) is a kind of biflavonoids existing in Ginkgo biloba leaves. It has many biological activities, such as antioxidant, anti-inflammatory, anti-bacterial, antiviral, hypoglycemic, anti-tumor and inducing apoptosis. However, its solubility and bioavailability are poor and there are a few studies on it in vivo. In this study, to improve its solubility and bioavailability, the nanomicelles were prepared with TPGS and soluplus as carriers for the first time. The particle size, Zeta potential, encapsulation efficiency, drug loading, stability, cytotoxicity, cellular uptake, and metabolites in rats were studied. Cytotoxicity, cellular uptake, and metabolites in rats of AMF-loaded TPGS/soluplus mixed micelles were compared with those of AMF. As a result, AMF-loaded TPGS/soluplus mixed micelles with a particle size of 67.33 ± 2.01 nm and Zeta potential of −0.84133 ± 0.041405 mV were successfully prepared. The encapsulation efficiency and drug loading of the mixed nanomicelles were 99.18 ± 0.76% and 2.47 ± 0.01%, respectively. The physical and chemical properties of the mixed micelles were stable within 60 d, and the cytotoxicity of the mixed micelles was much greater than that of AMF monomers. Thirty-four kinds of metabolites of AMF were identified in rats. The metabolites were mainly distributed in rat feces. No metabolites were detected in bile and plasma. 14 kinds of metabolites of the mixed micelles in rats were detected, including 11 in feces, 6 in urine, and 3 in plasma, which indicated that the bioavailability of AMF has been improved. And the toxicity to cancer cells was enhanced, which laid a foundation for the development of new drugs

    Preparation and antitumor evaluation of hinokiflavone hybrid micelles with mitochondria targeted for lung adenocarcinoma treatment

    No full text
    Hinokiflavone (HF) is a natural biflavonoid extracted from medicinal plants such as Selaginella tamariscina and Platycladus orientalis. HF plays a crucial role in the treatment of several cancers. However, its poor solubility, instability, and low bioavailability have limited its use. In this study, soluplus/d-α-tocopherol acid polyethylene glycol 1000 succinate (TPGS)/dequalinium (DQA) was applied to improve the solubilization efficiency and stability of HF. HF hybrid micelles were prepared via thin-film hydration method. The physicochemical properties of micelles, including particle size, zeta potential, encapsulation efficiency, drug loading, CMC value, and stability were investigated. The in vitro cytotoxicity assay showed that the cytotoxicity of the HF hybrid micelles was higher than that of free HF. In addition, the HF hybrid micelles improved anticancer efficacy and induced mitochondria-mediated apoptosis, which is associated with the high levels of ROS inducing decreased mitochondrial membrane potential, promoting apoptosis of tumor cells. Furthermore, in vivo tumor suppression, smaller tumor volume and increased expression of pro-apoptotic proteins were found in nude mice treated with HF hybrid micelles, suggesting that HF hybrid micelles had stronger tumor suppressive activity compared with free HF. In summary, HF hybrid micelles developed in this study enhanced antitumor effect, which may be a potential drug delivery system for the treatment of lung adenocarcinoma

    Rapid and Sensitive Analysis of Volatile Components of Different Parts of Clausena lansium by Ionic Liquid Based Headspace Gas Chromatography-Mass Spectrometry

    No full text
    A rapid and sensitive ionic liquid (IL) based headspace gas chromatography-mass spectrometry (HS-GC-MS) method was developed for analyzing volatile components in leaf, pericarp, and seed of Clausena lansium from different areas in Hainan Province, China. HS efficiencies were carefully investigated by using three ILs and water as matrix media. Extraction parameters, including equilibrium temperature, equilibrium time, and stirring rate had been evaluated and optimized by using an orthogonal design with OA9(33) table. Under the optimized condition of IL-based HS-GC-MS, only 100 mg of sample and 2 mL of [Bmim][BF4] were needed to comprehensively and accurately analyze the volatile components in Clausena lansium. By utilizing a cluster analysis, six clusters were obtained for ninety components. This method was simpler, more rapid, and more sensitive when compared with previously reported methods for analyzing and identifying volatile components in Clausena lansium. The results may provide a theoretical basis for further exploitation of Clausena lansium

    Effects of m

    No full text

    Identification of Metabolites of Eupatorin in Vivo and in Vitro Based on UHPLC-Q-TOF-MS/MS

    No full text
    Eupatorin is the major bioactive component of Java tea (Orthosiphon stamineus), exhibiting strong anticancer and anti-inflammatory activities. However, no research on the metabolism of eupatorin has been reported to date. In the present study, ultra-high-performance liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) combined with an efficient online data acquisition and a multiple data processing method were developed for metabolite identification in vivo (rat plasma, bile, urine and feces) and in vitro (rat liver microsomes and intestinal flora). A total of 51 metabolites in vivo, 60 metabolites in vitro were structurally characterized. The loss of CH2, CH2O, O, CO, oxidation, methylation, glucuronidation, sulfate conjugation, N-acetylation, hydrogenation, ketone formation, glycine conjugation, glutamine conjugation and glucose conjugation were the main metabolic pathways of eupatorin. This was the first identification of metabolites of eupatorin in vivo and in vitro and it will provide reference and valuable evidence for further development of new pharmaceuticals and pharmacological mechanisms

    UHPLC-Q-TOF-MS/MS Method Based on Four-Step Strategy for Metabolism Study of Fisetin <i>in Vitro</i> and <i>in Vivo</i>

    No full text
    Fisetin has been identified as an anticancer agent with antiangiogenic properties in mice. However, its metabolism <i>in vitro</i> (rat liver microsomes) and <i>in vivo</i> (rats) is presently not characterized. In this study, ultra-high-performance liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) was employed for data acquiring, and a four-step analytical strategy was developed to screen and identify metabolites. First, full-scan was applied, which was dependent on a multiple mass defect filter (MMDF) combined with dynamic background subtraction (DBS). Then PeakView 1.2 and Metabolitepilot 1.5 software were used to load data to seek possible metabolites. Finally, metabolites were identified according to mass measurement and retention time. Moreover, isomers were distinguished based on Clog P parameter. Based on the proposed method, 53 metabolites <i>in vivo</i> and 14 metabolites <i>in vitro</i> were characterized. Moreover, metabolic pathways mainly included oxidation, reduction, hydrogenation, methylation, sulfation, and glucuronidation

    Correlation between Chemical Composition and Antifungal Activity of <i>Clausena lansium</i> Essential Oil against <i>Candida</i> spp.

    No full text
    Essential oils (EOs) have been shown to have a diversity of beneficial human health effects. Clausena is a large and highly diverse genus of plants with medicinal and cosmetic significance. The aim of this study was to analyze the composition of Clausena lansium EOs and to investigate their potential antifungal effects. The chemical compositions of Clausena lansium EOs obtained by hydrodistillation were analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 101 compounds were identified among the diverse extracts of C. lansium. EOs of leaves and pericarps from different cultivars (Hainan local wampee and chicken heart wampee) collected in Hainan (China) were classified into four clusters based on their compositions. These clusters showed different antifungal activities against five Candida species (C. albicans, C. tropicalis, C. glabrata, C. krusei and C. parapsilosis) using the disc diffusion method. Clausena lansium EOs of pericarps displayed noteworthy antifungal activitives against all the tested Candida strains with inhibition zone diameters in the range of 11.1&#8211;23.1 mm. EOs of leaves showed relatively low antifungal activities with inhibition zone diameters in the range of 6.5&#8211;22.2 mm. The rank order of antifungal activities among the four EO clusters was as follows: Cluster IV&gt; Cluster III &gt; Cluster I &#8805; Cluster II. These results represent the first report about the correlation between chemical composition of C. lansium EOs and antifungal activity. Higher contents of &#946;-phellandrene, &#946;-sesquiphellandrene and &#946;-bisabolene in EOs of pericarps were likely responsible for the high antifungal activity of Cluster IV EOs. Taken together, our results demonstrate the chemical diversity of Clausena lansium EOs and their potential as novel antifungal agents for candidiasis caused by Candida spp. Furthermore, the obtained results showing a wide spectrum of antifungal activities provide scientific evidence for the traditional use of these plants

    Metabolism studies on hydroxygenkwanin and genkwanin in human liver microsomes by UHPLC-Q-TOF-MS

    No full text
    <p>Hydroxygenkwanin (HYGN) and genkwanin (GN) are major constituents of <i>Genkwa Flos</i> for the treatment of edema, ascites, cough, asthma and cancer. This is a report about the investigation of the metabolic fate of HYGN and GN in human liver microsomes and the recombinant UDP-glucuronosyltransferase (UGT) enzymes by using ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS). An on-line data acquisition method multiple mass defect filter (MMDF) combined with dynamic background subtraction (DBS) was developed to trace all probable metabolites. Based on this analytical strategy, three phase I metabolites and seven glucuronide conjugation metabolites of HYGN, seven phase I metabolites and 12 glucuronide conjugation metabolites of GN were identified in the incubation samples of human liver microsomes. The results indicated that demethylation, hydroxylation and o-glucuronidation were main metabolic pathways of HYGN and GN. The specific UGT enzymes responsible for HYGN and GN glucuronidation metabolites were identified using recombinant UGT enzymes. The results indicated that UGT1A1, UGT1A3, UGT1A9, UGT1A10 and UGT2B7 might play major roles in the glucuronidation reactions. Overall, this study may be useful for the investigation of metabolic mechanism of HYGN and GN, and it can provide reference and evidence for further experiments.</p

    Simultaneous Determination of Six Coumarins in Rat Plasma and Metabolites Identification of Bergapten <i>in Vitro</i> and <i>in Vivo</i>

    No full text
    Coumarins are abundant in Umbelliferae and Rutaceae plants possessing varied pharmacological activities. The objectives of this study are to develop and validate the method for determination of six coumarins in rat plasma by liquid chromatography coupled with tandem mass spectrometry (LC-MS) and identify the metabolites of bergapten by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS), respectively. Data-dependent acquisition mode (DDA) was applied to trigger enhanced product ion (EPI) scans by analyzing multiple reaction monitoring (MRM) signals. An efficient data processing method “key product ions (KPIs)” was used for rapid detection and identification of metabolites as an assistant tool. The time to reach the maximum plasma concentration (<i>T</i><sub>max</sub>) for the six compounds ranged from 1 to 6 h. A total of 24 metabolites of bergapten were detected <i>in vitro</i> and <i>in vivo</i>. The results could provide a basis for absorption and metabolism of coumarins
    corecore