3 research outputs found

    Biosynthesis of Jasmine Lactone in Tea (<i>Camellia sinensis</i>) Leaves and Its Formation in Response to Multiple Stresses

    No full text
    Jasmine lactone has a potent odor that contributes to the fruity, sweet floral aroma of tea (<i>Camellia sinensis</i>). Our previous study demonstrated that jasmine lactone was mostly accumulated at the turnover stage of the oolong tea manufacturing process. This study investigates the previously unknown mechanism of formation of jasmine lactone in tea leaves exposed to multiple stresses occurring during the growth and manufacturing processes. Both continuous mechanical damage and the dual stress of low temperature and mechanical damage enhanced jasmine lactone accumulation in tea leaves. In addition, only one pathway, via hydroperoxy fatty acids from unsaturated fatty acid, including linoleic acid and α-linolenic acid, under the action of lipoxygenases (LOXs), especially CsLOX1, was significantly affected by these stresses. This is the first evidence of the mechanism of jasmine lactone formation in tea leaves and is a characteristic example of plant volatile formation in response to dual stress

    Biosynthetic Pathway and Bioactivity of Vanillin, a Highly Abundant Metabolite Distributed in the Root Cortex of Tea Plants (<i>Camellia sinensis</i>)

    No full text
    Volatiles are important for plant root stress resistance. The diseases in tea root are serious, causing major losses. The volatile composition in tea root and whether it can resist diseases remain unclear. In this study, the volatile composition in different tea tissues was revealed. The vanillin content was higher in the root (mainly in root cortex) than in aerial parts. The antifungal effects of vanillin on pathogenic fungi in tea root were equal to or greater than those of other metabolites. O-methyltransferase (CsOMT), a key enzyme in one of two biosynthetic pathways of vanillin, converted protocatechualdehyde to vanillin in vitro. Furthermore, its characteristics and kinetic parameters were studied. In Arabidopsis thaliana protoplasts, the transiently expressed CsOMT was localized in the cytoplasm and nucleus. These findings have clarified the formation and bioactivities of volatiles in tea roots and provided a theoretical basis for understanding how tea plants resist root diseases

    Formation of Volatile Tea Constituent Indole During the Oolong Tea Manufacturing Process

    No full text
    Indole is a characteristic volatile constituent in oolong tea. Our previous study indicated that indole was mostly accumulated at the turn over stage of oolong tea manufacturing process. However, formation of indole in tea leaves remains unknown. In this study, one tryptophan synthase α-subunit (TSA) and three tryptophan synthase β-subunits (TSBs) from tea leaves were isolated, cloned, sequenced, and functionally characterized. Combination of CsTSA and CsTSB2 recombinant protein produced in <i>Escherichia coli</i> exhibited the ability of transformation from indole-3-glycerol phosphate to indole. CsTSB2 was highly expressed during the turn over process of oolong tea. Continuous mechanical damage, simulating the turn over process, significantly enhanced the expression level of CsTSB2 and amount of indole. These suggested that accumulation of indole in oolong tea was due to the activation of CsTSB2 by continuous wounding stress from the turn over process. Black teas contain much less indole, although wounding stress is also involved in the manufacturing process. Stable isotope labeling indicated that tea leaf cell disruption from the rolling process of black tea did not lead to the conversion of indole, but terminated the synthesis of indole. Our study provided evidence concerning formation of indole in tea leaves for the first time
    corecore