69 research outputs found

    Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy

    Get PDF
    The imaging of living cells and tissues using laser-scanning microscopy is offering dramatic insights into the spatial and temporal controls of biological processes. The availability of genetically encoded labels such as green fluorescent protein (GFP) offers unique opportunities by which to trace cell movements, cell signaling or gene expression dynamically in developing embryos. Two-photon laser scanning microscopy (TPLSM) is ideally suited to imaging cells in vivo due to its deeper tissue penetration and reduced phototoxicity; however, in TPLSM the excitation and emission spectra of GFP and its color variants [e.g., CyanFP (CFP); yellowFP (YFP)] are insufficiently distinct to be uniquely imaged by conventional means. To surmount such difficulties, we have combined the technologies of TPLSM and imaging spectroscopy to unambiguously identify CFP, GFP, YFP, and redFP (RFP) as well as conventional dyes, and have tested the approach in cell lines. In our approach, a liquid crystal tunable filter was used to collect the emission spectrum of each pixel within the TPLSM image. Based on the fluorescent emission spectra, supervised classification and linear unmixing analysis algorithms were used to identify the nature and relative amounts of the fluorescent proteins expressed in the cells. In a most extreme case, we have used the approach to separate GFP and fluorescein, separated by only 7 nm, and appear somewhat indistinguishable by conventional techniques. This approach offers the needed ability to concurrently image multiple colored, spectrally overlapping marker proteins within living cells

    High-speed multicolor microscopy of repeating dynamic processes

    Get PDF
    Images of multiply labeled fluorescent samples provide unique insights into the localization of molecules, cells, and tissues. The ability to image multiple channels simultaneously at high speed without cross talk is limited to a few colors and requires dedicated multichannel or multispectral detection procedures. Simpler microscopes, in which each color is imaged sequentially, produce a much lower frame rate. Here, we describe a technique to image, at high frame rate, multiply labeled samples that have a repeating motion. We capture images in a single channel at a time over one full occurrence of the motion then repeat acquisition for other channels over subsequent occurrences. We finally build a high-speed multichannel image sequence by combining the images after applying a normalized mutual information-based time registration procedure. We show that this technique is amenable to image the beating heart of a double-labeled embryonic quail in three channels (brightfield, yellow, and mCherry fluorescent proteins) using a fluorescence wide-field microscope equipped with a single monochrome camera and without fast channel switching optics. We experimentally evaluate the accuracy of our method on image series from a two-channel confocal microscope

    Digital Three-Dimensional Atlas of Quail Development Using High-Resolution MRI

    Get PDF
    We present an archetypal set of three-dimensional digital atlases of the quail embryo based on microscopic magnetic resonance imaging (µMRI). The atlases are composed of three modules: (1) images of fixed ex ovo quail, ranging in age from embryonic day 5 to 10 (e05 to e10); (2) a coarsely delineated anatomical atlas of the µMRI data; and (3) an organ system–based hierarchical graph linked to the anatomical delineations. The atlas is designed to be accessed using SHIVA, a free Java application. The atlas is extensible and can contain other types of information including anatomical, physiological, and functional descriptors. It can also be linked to online resources and references. This digital atlas provides a framework to place various data types, such as gene expression and cell migration data, within the normal three-dimensional anatomy of the developing quail embryo. This provides a method for the analysis and examination of the spatial relationships among the different types of information within the context of the entire embryo

    Ku70 Is Required for Late B Cell Development and Immunoglobulin Heavy Chain Class Switching

    Get PDF
    Immunoglobulin (Ig) heavy chain (HC) class switch recombination (CSR) is a late B cell process that involves intrachromosomal DNA rearrangement. Ku70 and Ku80 form a DNA end-binding complex required for DNA double strand break repair and V(D)J recombination. Ku70^(−/−) (K70T) mice, like recombination activating gene (RAG)-1– or RAG-2–deficient (R1T or R2T) mice, have impaired B and T cell development at an early progenitor stage, which is thought to result at least in part from defective V(D)J recombination (Gu, Y., K.J. Seidl, G.A. Rathbun, C. Zhu, J.P. Manis, N. van der Stoep, L. Davidson, H.L. Cheng, J.M. Sekiguchi, K. Frank, et al. 1997. Immunity. 7:653–665; Ouyang, H., A. Nussenzweig, A. Kurimasa, V.C. Soares, X. Li, C. Cordon-Cardo, W. Li, N. Cheong, M. Nussenzweig, G. Iliakis, et al. 1997. J. Exp. Med. 186:921–929). Therefore, to examine the potential role of Ku70 in CSR, we generated K70T mice that carry a germline Ig HC locus in which the JH region was replaced with a functionally rearranged VH(D)JH and Ig λ light chain transgene (referred to as K70T/HL mice). Previously, we have shown that B cells from R1T or R2T mice carrying these rearranged Ig genes (R1T/HL or R2T/HL mice) can undergo CSR to IgG isotypes (Lansford, R., J. Manis, E. Sonoda, K. Rajewsky, and F. Alt. 1998. Int. Immunol. 10:325–332). K70T/HL mice had significant numbers of peripheral surface IgM^+ B cells, which generated serum IgM levels similar to those of R2T/HL mice. However, in contrast to R2T/HL mice, K70T/HL mice had no detectable serum IgG isotypes. In vitro culture of K70T/HL B cells with agents that induce CSR in normal or R2T/HL B cells did lead to the induction of germline CH transcripts, indicating that initial signaling pathways for CSR were intact in K70T/HL cells. However, treatment with such agents did not lead to detectable CSR by K70T/HL B cells, and instead, led to cell death within 72 h. We conclude that Ku70 is required for the generation of B cells that have undergone Ig HC class switching. Potential roles for Ku70 in the CSR process are discusse

    Multispectral fingerprinting for improved in vivo cell dynamics analysis

    Get PDF
    Background: Tracing cell dynamics in the embryo becomes tremendously difficult when cell trajectories cross in space and time and tissue density obscure individual cell borders. Here, we used the chick neural crest (NC) as a model to test multicolor cell labeling and multispectral confocal imaging strategies to overcome these roadblocks. Results: We found that multicolor nuclear cell labeling and multispectral imaging led to improved resolution of in vivo NC cell identification by providing a unique spectral identity for each cell. NC cell spectral identity allowed for more accurate cell tracking and was consistent during short term time-lapse imaging sessions. Computer model simulations predicted significantly better object counting for increasing cell densities in 3-color compared to 1-color nuclear cell labeling. To better resolve cell contacts, we show that a combination of 2-color membrane and 1-color nuclear cell labeling dramatically improved the semi-automated analysis of NC cell interactions, yet preserved the ability to track cell movements. We also found channel versus lambda scanning of multicolor labeled embryos significantly reduced the time and effort of image acquisition and analysis of large 3D volume data sets. Conclusions: Our results reveal that multicolor cell labeling and multispectral imaging provide a cellular fingerprint that may uniquely determine a cell's position within the embryo. Together, these methods offer a spectral toolbox to resolve in vivo cell dynamics in unprecedented detail

    Becoming a new neuron in the adult olfactory bulb

    Get PDF
    New neurons are continually recruited throughout adulthood in certain regions of the adult mammalian brain. How these cells mature and integrate into preexisting functional circuits remains unknown. Here we describe the physiological properties of newborn olfactory bulb interneurons at five different stages of their maturation in adult mice. Patch-clamp recordings were obtained from tangentially and radially migrating young neurons and from neurons in three subsequent maturation stages. Tangentially migrating neurons expressed extrasynaptic GABAA receptors and then AMPA receptors, before NMDA receptors appeared in radially migrating neurons. Spontaneous synaptic activity emerged soon after migration was complete, and spiking activity was the last characteristic to be acquired. This delayed excitability is unique to cells born in the adult and may protect circuits from uncontrolled neurotransmitter release and neural network disruption. Our results show that newly born cells recruited into the olfactory bulb become neurons, and a unique sequence of events leads to their functional integration

    Formation and removal of alkylthiolate self-assembled monolayers on gold in aqueous solutions

    Get PDF
    We report the development of novel reagents and approaches for generating recyclable biosensors. The use of aqueous media for the formation of protein binding alkylthiolate monolayers on Au surfaces results in accelerated alkylthiolate monolayer formation and improvement in monolayer integrity as visualized by fluorescence microscopy and CV techniques. We have also developed an electrocleaning protocol that is compatible with microfluidics devices, and this technique serves as an on-chip method for cleaning Au substrates both before and after monolayer formation. The techniques for the formation and dissociation of biotinylated SAMs from aqueous solvents reported here may be applied towards the development of Au-based sensor devices and microfluidics chips in the future. A potential use of these devices includes the specific capture and triggered release of target cells, proteins, or small molecules from liquid samples

    A transgenic quail model that enables dynamic imaging of amniote embryogenesis

    Get PDF
    Embryogenesis is the coordinated assembly of tissues during morphogenesis through changes in individual cell behaviors and collective cell movements. Dynamic imaging, combined with quantitative analysis, is ideal for investigating fundamental questions in developmental biology involving cellular differentiation, growth control and morphogenesis. However, a reliable amniote model system that is amenable to the rigors of extended, high-resolution imaging and cell tracking has been lacking. To address this shortcoming, we produced a novel transgenic quail that ubiquitously expresses nuclear localized monomer cherry fluorescent protein (chFP). We characterize the expression pattern of chFP and provide concrete examples of how Tg(PGK1:H2B-chFP) quail can be used to dynamically image and analyze key morphogenetic events during embryonic stages X to 11

    Combinatorial Analysis of mRNA Expression Patterns in Mouse Embryos Using Hybridization Chain Reaction

    Get PDF
    Multiplexed fluorescent hybridization chain reaction (HCR) and advanced imaging techniques can be used to evaluate combinatorial gene expression patterns in whole mouse embryos with unprecedented spatial resolution. Using HCR, DNA probes complementary to mRNA targets trigger chain reactions in which metastable fluorophore-labeled DNA HCR hairpins self-assemble into tethered fluorescent amplification polymers. Each target mRNA is detected by a probe set containing one or more DNA probes, with each probe carrying two HCR initiators. For multiplexed experiments, probe sets for different target mRNAs carry orthogonal initiators that trigger orthogonal DNA HCR amplification cascades labeled by spectrally distinct fluorophores. As a result, in situ amplification is performed for all targets simultaneously, and the duration of the experiment is independent of the number of target mRNAs. We have used multiplexed fluorescent in situ HCR and advanced imaging technologies to address questions of cell heterogeneity and tissue complexity in craniofacial patterning and anterior neural development. In the sample protocol presented here, we detect three different mRNA targets: Tg(egfp), encoding the enhanced green fluorescent protein (GFP) transgene (typically used as a control); Twist1, encoding a transcription factor involved in cell lineage determination and differentiation; and Pax2, encoding a transcription factor expressed in the mid-hindbrain region of the mouse embryo
    corecore