155 research outputs found

    Bromodeoxyuridine does not contribute to sister chromatid exchange events in normal or Bloom syndrome cells

    Get PDF
    Sister chromatid exchanges (SCEs) are considered sensitive indicators of genome instability. Detection of SCEs typically requires cells to incorporate bromodeoxyuridine (BrdU) during two rounds of DNA synthesis. Previous studies have suggested that SCEs are induced by DNA replication over BrdU-substituted DNA and that BrdU incorporation alone could be responsible for the high number of SCE events observed in cells from patients with Bloom syndrome (BS), a rare genetic disorder characterized by marked genome instability and high SCE frequency. Here we show using Strand-seq, a single cell DNA template strand sequencing technique, that the presence of variable BrdU concentrations in the cell culture medium and in DNA template strands has no effect on SCE frequency in either normal or BS cells. We conclude that BrdU does not induce SCEs and that SCEs detected in either normal or BS cells reflect DNA repair events that occur spontaneously.</p

    Telomeres and disease

    Get PDF
    The telomeres of most eukaryotes are characterized by guanine-rich repeats synthesized by the reverse transcriptase telomerase. Complete loss of telomerase is tolerated for several generations in most species, but modestly reduced telomerase levels in human beings are implicated in bone marrow failure, pulmonary fibrosis and a spectrum of other diseases including cancer. Differences in telomerase deficiency phenotypes between species most likely reflect a tumour suppressor function of telomeres in long-lived mammals that does not exist as such in short-lived organisms. Another puzzle provided by current observations is that family members with the same genetic defect, haplo-insufficiency for one of the telomerase genes, can present with widely different diseases. Here, the crucial role of telomeres and telomerase in human (stem cell) biology is discussed from a Darwinian perspective. It is proposed that the variable phenotype and penetrance of heritable human telomerase deficiencies result from additional environmental, genetic and stochastic factors or combinations thereof

    High incidence of rapid telomere loss in telomerase-deficient Caenorhabditis elegans

    Get PDF
    Telomerase is essential to maintain telomere length in most eukaryotes. Other functions for telomerase have been proposed but molecular mechanisms remain unclear. We studied Caenorhabditis elegans with a mutation in the trt-1 telomerase reverse transcriptase gene. Mutant animals showed a progressive decrease in brood size and typically failed to reproduce after five generations. Using PCR analysis to measure the length of individual telomere repeat tracks on the left arm of chromosome V we observed that trt-1 mutants lost ∼125bp of telomeric DNA per generation. Chromosome fusions involving complex recombination reactions were observed in late generations. Strikingly, trt-1 mutant animals displayed a high frequency of telomeres with many fewer repeats than average. Such outlying short telomeres were not observed in mrt-2 mutants displaying progressive telomere loss very similar to trt-1 mutants. We speculate that, apart from maintaining the average telomere length, telomerase is required to prevent or repair sporadic telomere truncations that are unrelated to the typical β€˜end-replication’ problems

    CD27 Expression Promotes Long-Term Survival of Functional Effector–Memory CD8+Cytotoxic T Lymphocytes in HIV-infected Patients

    Get PDF
    Human immunodeficiency virus (HIV)-specific CD8+ T cells persist in high frequencies in HIV-infected patients despite impaired CD4+ T helper response to the virus, but, unlike other differentiated effector cytotoxic T lymphocytes, most continue to express the tumor necrosis factor receptor family member CD27. Because the ligand for CD27 (CD70) is also overexpressed in HIV-infected hosts, we examined the nature of expression and potential functional consequences of CD27 expression on HIV-specific CD8+ T cells. Analysis of CD27+ and CD27βˆ’ T cells derived from the same HIV-specific clone revealed that retention of CD27 did not interfere with acquisition of effector functions, and that after T cell receptor stimulation, CD27+ cells that concurrently were triggered via CD27 exhibited more resistance to apoptosis, interleukin 2 production, and proliferation than CD27βˆ’ T cells. After transfer back into an HIV-infected patient, autologous HIV-specific CD27βˆ’ T cells rapidly disappeared, but CD27+ T cells derived from the same clone persisted at high frequency. Our findings suggest that the CD27–CD70 interaction in HIV infection may provide CD27+ CD8+ T cells with a survival advantage and compensate for limiting or absent CD4+ T help to maintain the CD8 response

    Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells

    Get PDF
    AbstractDNA repair by nonhomologous end-joining (NHEJ) relies on the Ku70:Ku80 heterodimer in species ranging from yeast to man. In Saccharomyces cerevisiae and Schizosaccharomyces pombe, Ku also controls telomere functions. Here, we show that Ku70, Ku80, and DNA-PKcs, with which Ku interacts, associate in vivo with telomeric DNA in several human cell types, and we show that these associations are not significantly affected by DNA-damaging agents. We also demonstrate that inactivation of Ku80 or Ku70 in the mouse yields telomeric shortening in various primary cell types at different developmental stages. By contrast, telomere length is not altered in cells impaired in XRCC4 or DNA ligase IV, two other NHEJ components. We also observe higher genomic instability in Ku-deficient cells than in XRCC4-null cells. This suggests that chromosomal instability of Ku-deficient cells results from a combination of compromised telomere stability and defective NHEJ

    RTEL1 contributes to DNA replication and repair and telomere maintenance

    Get PDF
    Telomere maintenance and DNA repair are important processes that protect the genome against instability. mRtel1, an essential helicase, is a dominant factor setting telomere length in mice. In addition, mRtel1 is involved in DNA double-strand break repair. The role of mRtel1 in telomere maintenance and genome stability is poorly understood. Therefore we used mRtel1-deficient mouse embryonic stem cells to examine the function of mRtel1 in replication, DNA repair, recombination, and telomere maintenance. mRtel1-deficient mouse embryonic stem cells showed sensitivity to a range of DNA-damaging agents, highlighting its role in replication and genome maintenance. Deletion of mRtel1 increased the frequency of sister chromatid exchange events and suppressed gene replacement, demonstrating the involvement of the protein in homologous recombination. mRtel1 localized transiently at telomeres and is needed for efficient telomere replication. Of interest, in the absence of mRtel1, telomeres in embryonic stem cells appeared relatively stable in length, suggesting that mRtel1 is required to allow extension by telomerase. We propose that mRtel1 is a key protein for DNA replication, recombination, and repair and efficient elongation of telomeres by telomerase

    Construction of Strand-seq libraries in open nanoliter arrays

    Get PDF
    Single-cell Strand-seq generates directional genomic information to study DNA repair, assemble genomes, and map structural variation onto chromosome-length haplotypes. We report a nanoliter-volume, one-pot (OP) Strand-seq library preparation protocol in which reagents are added cumulatively, DNA purification steps are avoided, and enzymes are inactivated with a thermolabile protease. OP-Strand-seq libraries capture 10%-25% of the genome from a single-cell with reduced costs and increased throughput

    Functional characterization of telomerase RNA variants found in patients with hematologic disorders

    Get PDF
    Human telomerase uses a specific cellular RNA, called hTERC, as the template to synthesize telomere repeats at chromosome ends. Approximately 10% to 15% of patients with aplastic anemia or other bone marrow failure syndromes are carriers of hTERC sequence variants whose functional significance, in most cases, is unknown. We screened 10 reported and 2 newly discovered hTERC variants from such patients and found that 10 of these negatively affected telomerase enzymatic function when they were used to reconstitute telomerase enzymatic function in human cells. Most functional deficits were due to perturbations of hTERC secondary structure and correlated well with the degrees of telomere shortening and reduced telomerase activity observed in peripheral blood lymphocytes of the representative patients. We also found no evidence of dominant-negative activity in any of the mutants. Therefore, loss of telomerase activity and of telomere maintenance resulting from inherited hTERC mutations may limit marrow stem cell renewal and predispose some patients to bone marrow failure. (Blood. 2005;105: 2332-2339

    Deposition Bias of Chromatin Proteins Inverts under DNA Replication Stress Conditions

    Get PDF
    Following DNA replication, equal amounts of chromatin proteins are distributed over sister chromatids by re-deposition of parental chromatin proteins and deposition of newly synthesized chromatin proteins. Molecular mechanisms balancing the allocation of new and old chromatin proteins remain largely unknown. Here, we studied the genome-wide distribution of new chromatin proteins relative to parental DNA template strands and replication initiation zones using the double-click-seq. Under control conditions, new chromatin proteins were preferentially found on DNA replicated by the lagging strand machinery. Strikingly, replication stress induced by hydroxyurea or curaxin treatment and inhibition of ataxia telangiectasia and Rad3-related protein (ATR) or p53 inactivation inverted the observed chromatin protein deposition bias to the strand replicated by the leading strand polymerase in line with previously reported effects on replication protein A occupancy. We propose that asymmetric deposition of replication protein occupancy. propose asymmetric deposition newly synthesized chromatin proteins onto sister chromatids reflects differences in the processivity of leading and lagging strand synthesis
    • …
    corecore