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DNA repair by nonhomologous end-joining (NHEJ) Results and discussion
In Schizosaccharomyces pombe and Saccharomyces cerevisiae,relies on the Ku70:Ku80 heterodimer in species

ranging from yeast to man. In Saccharomyces inactivation of either Ku subunit leads to shortened stable
telomeres [1–2]. Ku has been localized to S. cerevisiaecerevisiae and Schizosaccharomyces pombe, Ku

also controls telomere functions. Here, we show that telomeres by indirect immunofluorescence and by chro-
matin-immunoprecipitation (CHIP; [3–4]). In mice, KuKu70, Ku80, and DNA-PKcs, with which Ku

interacts, associate in vivo with telomeric DNA in inactivation causes severe radiosensitivity [5]. Ku-inacti-
vated cells also show increased rates of genomic instabilityseveral human cell types, and we show that these

associations are not significantly affected by DNA- [6–8].
damaging agents. We also demonstrate that
inactivation of Ku80 or Ku70 in the mouse yields We analyzed whether both Ku subunits and the catalytic
telomeric shortening in various primary cell types subunit of DNA-PK (DNA-PKcs) are physically associ-
at different developmental stages. By contrast, ated with telomeric DNA in vivo in human cells by CHIP
telomere length is not altered in cells impaired in [9]. Human HeLa cells were crosslinked with formalde-
XRCC4 or DNA ligase IV, two other NHEJ hyde, chromatin was prepared, and immunoprecipitations
components. We also observe higher genomic were performedwith antibodies against Ku orDNA-PKcs.
instability in Ku-deficient cells than in XRCC4-null Telomeric DNA in the immunoprecipitates was then ana-
cells. This suggests that chromosomal instability lyzed by dot-blot hybridization (Figure 1a). In addition
of Ku-deficient cells results from a combination of to the previously reported interaction of Ku80 with telo-
compromised telomere stability and defective meres [10, 11], we found that Ku70 and DNA-PKcs are
NHEJ. also associated with telomeric DNA. Therefore, the en-

tire, possibly catalytically competent, DNA-PK complex
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hybridization (qFISH; [16]) can detect and quantitate the
signal generated by hybridization of a fluorescent probe
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Figure 1

Ku70, Ku80, and DNA-PKcs are associated with human cell telomeric brought down similar amounts of Alu DNA, showing that enrichment
DNA as detected by CHIP. (a) A telomeric probe recognized for telomeric DNA is specific. (c) Ku is associated with telomeric DNA
telomeric DNA when antibodies raised against Ku70, Ku80, and DNA- in a variety of human cell lines; BJ are human primary fibroblasts,
PKcs were used to immunoprecipitate these antigens crosslinked BJ�hTERT are BJ cells into which the hTERT gene has been
to chromatin. Little or no telomeric DNA was retrieved when antibodies transduced, and VA13 are ALT cells. (d,e) Ku remains associated
were not included, when preimmune sera (PI) was used, or when with telomeric DNA in the presence of DNA damage; in (d), cells
crosslinking was omitted. An anti-TRF1 antibody was used as a positive were irradiated with 10 Gy of X-rays, and samples were analyzed at
control. Sera raised against factors not expected to have a specific the indicated times afterwards; in (e), cells were grown in the
telomeric localization did not bring down significant amounts of presence of 50 �g/ml phleomycin for the indicated times. Control
telomeric DNA (data not shown). (b) The specificity of the CHIP is comprised of beads alone without Ku antibodies.
immunoprecipitated DNA was checked by stripping the membrane Quantitation is available as Supplementary material.
and rehybridizing with an Alu probe: all the immunoprecipitations

at individual telomeres, irrespective of polymorphisms in young adultmice using flow-FISH [18], a technique based
on FISH combined with flow cytometry that allows fortelomeric and subtelomeric sequences. Primary mouse

embryonic fibroblasts (MEFs; population doubling � 3) quantitation of telomeric DNA in large numbers of intact
permeabilized G0–G1-gated interphase cells. Flow-FISHwere obtained from 11 embryos from 4 independent lit-

ters derived from heterozygous crosses. We found that analysis of freshly isolated primary thymocytes and sple-
nocytes fromKu80�/� and Ku80�/�mice revealed a reduc-Ku80�/� animals had lost�40% of their telomeric repeats

in comparison to Ku80�/� animals, whereas Ku80�/� mice tion in telomeric DNA in the latter (Table 2). These data
establish a role for Ku80 in the control of telomere lengthdisplayed an intermediate reduction (�20%; Table 1).

Without exception, within each litter, Ku80�/� animals in mice. The discrepancy between our findings and those
of [19] may reflect technical differences in data analysisalways had shorter telomeres than Ku80�/� animals, and

Ku80�/� animals always displayed intermediate-length or differences in mouse breeding or maintenance.
telomeres. Analysis of the distributions of telomere fluo-
rescence demonstrates that telomere shortening involves To investigate whether Ku also plays a functional role in

the telomeres of embryonic stem (ES) cells, we studiedthe vast majority of telomeres (see the Supplementary
material available with this article online). A similar level telomere length by qFISH in Ku70�/�ES cells. We found

that Ku70 inactivation leads to telomeric shortening. Bothof telomere shortening was observed in another Ku80
knockout mouse strain [17] (M.P. Hande, D. Gilley, and the calculated telomere lengths (Table 1) and the histogram

plots (see Supplementary material) show that the Ku70�/�D.J. Chen, personal communication).
ES cells that we have studied have shorter telomeres than
Ku70�/� parental cells (�29 kb versus 52 kb, respectively).We next studied telomere length in tissues derived from
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Table 1

Quantitative FISH analysis of telomere length.

MEFs Metaphases
Ku80 genotype analyzed p arm q arm all ends

1st litter 39.0 � 0.4 53.8 � 0.6 46.4 � 0.4�/�
�/� 25.2 � 0.3 28.5 � 0.5 26.8 � 0.3
�/� 18.7 � 0.2 17.6 � 0.3 18.1 � 0.2

2nd litter �/� 36.2 � 0.4 46.7 � 0.6 41.4 � 0.4
�/� 31.3 � 0.4 42.5 � 0.6 36.9 � 0.4
�/� 28.4 � 0.3 39.5 � 0.5 33.9 � 0.3

3rd litter 34.1 � 0.5 44.0 � 0.6 39.1 � 0.4�/�
�/� 27.7 � 0.3 39.5 � 0.5 33.6 � 0.3
�/� 25.2 � 0.4 30.3 � 0.4 27.7 � 0.3

4th litter 29.3 � 0.3 42.8 � 0.6 36.0 � 0.3�/�
�/� 20.3 � 0.4 28.5 � 0.5 24.4 � 0.3

Mean 46 36.8 � 0.3 48.9 � 0.4 42.3 � 0.2�/�
Mean 61 28.4 � 0.2 38.5 � 0.3 33.5 � 0.2�/�
Mean 62 22.2 � 0.2 28.0 � 0.2 25.1 � 0.1�/�

ES
Ku70 genotype
�/� 17 46.7 � 0.4 57.5 � 0.4 52.1 � 0.3
�/� 17 29.2 � 0.3 37.4 � 0.3 33.3 � 0.2

ES
XRCC4 genotype
�/� 16 41.4 � 0.2 55.2 � 0.2 48.3 � 0.2
�/� (clone 14–10) 16 38.4 � 0.2 48.8 � 0.3 43.6 � 0.2
�/� (clone 9–12) 15 47.7 � 0.3 56.9 � 0.4 52.3 � 0.2

qFISH analysis of early passage primary MEFs from Ku80�/�, are expressed in telomere fluorescence units (TFU) as mean �
Ku80�/�, and Ku80�/� embryos, together with the qFISH analysis standard error for the p arm, the q arm, and all ends. One TFU
of wild-type ES cells or Ku70�/� or XRCC4�/� ES cells. Values corresponds to 1 kb of TTAGGG repeats.

Besides Ku, the other known NHEJ components are possibly DNA-PKcs, have additional specialized roles at
telomeres. These results are in agreement with those ob-DNA-PKcs and theXRCC4/DNA ligase IV complex. The

involvement of DNA-PKcs in the control of telomere tained in S. cerevisiae and S. pombe, where homologs of
Ku70, Ku80, XRCC4, and ligase IV are all necessary forlength was addressed previously [20] and by others (D.

Gilley and D.J. Chen, personal communication), so we NHEJ, but only defects in Ku70 or Ku80 lead to telomeric
shortening.investigatedwhether the XRCC4/DNA ligase IV complex

controls telomere length. When we used qFISH to study
two independent XRCC4�/�ES cell clones [21], we found Telomeres are thought to prevent chromosomal fusions

and the consequent risk of genomic instability. Consistentno significant and reproducible effects of XRCC4 loss on
telomere length (Table 1). In line with this, Southern with recent studies [6–8], we found that Ku80�/� MEFs

were highly aneuploid and had high levels of chromosomalblot analysis did not reveal marked differences between
the telomere length profiles of DNA ligase IV-defective abnormalities (Table 3). Analysis by qFISH of fused chro-

mosomes in Ku80�/� cells indicated that 73% of the fusionhuman 180BR cells [22] and their matched controls (see
Supplementary material). Together, these data imply that points scored were devoid of detectable telomeric repeats.

Cells from heterozygousmice (Ku80�/�) had intermediatea defect in NHEJ per se does not cause telomeric shorten-
ing, and of the known NHEJ components, only Ku, and levels of genomic instability. The study of genomic stabil-

Table 2

Flow-FISH analysis of adult mouse thymocytes and splenocytes.

Thymocytes Splenocytes

Ku80 genotype MESF CV p value MESF CV p value

�/� 148.46 9% — 150.69 7% —
�/� 107.01 18% 0.001 129.84 12% 0.04

Telomere length analysis by flow-FISH of primary thymocytes and of equivalent soluble fluorochrome (MESF). Values are expressed
splenocytes. The inactivation of Ku80 leads to the reduction of with their CV (coefficient of variation). The statistical significance
the telomeric signal. Values are expressed in thousands of molecules of signal differences is expressed by the calculated p value.
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Table 3

Cytogenetic analysis.

Telomeres
Metaphases End-to-end Fusions lacking without detectable

MEFs genotype analyzed Aneuploid cells fusions (%)a TTTAGG repeatsa Fragments (%)a TTAGGG repeatsb

Ku80�/� 62 0 1 (1.6%) 0 3 (48%) 0
1RL 2AC, 1C

Ku80�/� 61 4 (6.6%) 8 (13.1%) 8 (13.1%) 11 (18%) 18
7R, 1DIC 10AC, 1C

Ku80�/� 107 35 (32.7%) 119 (111.2%) 78 (72.9%) 102 (95.3%) 306
55R, 45RL, 19DIC 54AC, 20C, 29F

Chromosomes
per metaphase

ES genotype (Mean � SE)c

Ku70�/� 50 40.4 � 0.1 1 (2%) 1 (2%) 2 (4%) 0
1RL 2AC

Ku70�/� 50 41.5 � 0.2 20 (40%) 18 (36%) 10 (20%) 19
16 RL, 4DIC 9AC,1C

ES genotype

XRCC4�/� 50 40.8 � 0.1 0 0 0 0
XRCC4�/� (14–10 clone) 50 40.5 � 0.2 5 (10%) 0 6 (12%) 0

5RL 6AC
XRCC4�/� (9–12 clone) 50 40.3 � 0.2 3 (6%) 1 (2%) 2 (4%) 0

3RL 1AC

Cytogenetic analysis of metaphase chromosomal spreads of primary c ES cells tend to be intrinsically aneuploid, therefore the chromosome
MEFs and ES cells. Annotations are as follows: number per metaphase is given.
a The percentage represents events per 100 cells. AC � acentric chromosomes, C � centric chromosomes, DIC �
b Telomeres with estimated TTAGGG repeats shorter than 200 bp. dicentric chromosomes, F � fragments, R � rings, and RL �

Robertsonian-like fusions.

ity of Ku70�/� ES cells revealed that they also have in- has established that inactivation of Ku or XRCC4 impairs
DNANHEJ to a similar extent [25, 26], these data suggestcreased numbers of chromosomal fusions and fragmenta-

tions compared to Ku-proficient ES control cells (Table that the extensive chromosomal instability of Ku-deficient
cells is not due to a NHEJ defect alone but reflects a3). However, Ku-inactivated ES cells showed less geno-

mic instability than Ku-deficient MEFs. Since the HR combination of defective NHEJ and impaired telomere
function.pathway appears to play a more prominent role in DNA

DSB repair in ES cells than in later development [23],
we speculate that the existence of an active HR system In conclusion, we have found that Ku70, Ku80, andDNA-
may compensate in part for the inactivation of the NHEJ PKcs associate with telomeric DNA in a variety of human
machinery and thus reduce the accumulation of chromo- cell types and under conditions in which telomeres are
somal aberrations in ES cells as compared to MEFs. maintained by either telomerase-based or HR-based

mechanisms. In addition, we have found that loss of Ku
leads to telomeric shortening in MEFs, adult tissues, andIn light of the differences between the effects of Ku and

XRCC4 on telomere length, we carried out a comparative ES cells. These findings support the view that the func-
tion of Ku in telomere length control is conserved fromcytogenetic analysis of ES cells lacking XRCC4 or Ku70.

In agreement with previous work [24], we found higher yeast to man. However, unlike the situation in yeast, we
have found that, at least by the assay methods we used,levels of chromosomal aberrations in the XRCC4�/�

clones than in the parental cells. However, despite the the association of human Ku with telomeres is apparently
resistant to the generation of DNA damage. Furthermore,XRCC4 deletion having been introduced into the same

ES cell strain by the same technique and in the same our data (see Supplementary material) and those of [19]
reveal that the loss of Ku in mouse does not lead tolaboratory as the Ku70 mutation [21, 25], Ku70�/� cells

had five times more chromosome fusions and more than the generation of lengthened telomeric single-stranded
overhangs. Although the reason for these differences istwice the number of fragmented chromosomes than

XRCC4�/� cells. Furthermore, and in line with the telo- not yet apparent, they could be linked to DNA-PKcs,
which is present in mammals but not in yeasts. Further-meremeasurement data, telomere signals were detectable

at most chromosomal fusion points in XRCC4�/� cells, more, although other explanations are possible, our cyto-
genetic analysis of XRCC4- and Ku-deficient cells sug-but not at those of Ku70�/� cells. Since previous work
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