2 research outputs found

    SIMULATION OF PULVERIZED COAL FIRED BOILER: REACTION CHAMBER

    Get PDF
    This work is part of a joint project to built a computational tool for power plant simulation, dealing specifically with the reaction chamber (place of the boiler where the fuel is burned). In order to describe the conversion of chemical energy to thermal energy, an onedimensional pseudo-homogeneous mathematical model, with variable physical properties, and based on mass and energy balances, was developed. The equations were implemented in the gPROMS simulator and the model parameters were estimated using the module gEST of this software, with experimental data from a large-scale coal-fired utility boiler and kinetic data from the open literature. The results showed that the model predicts the composition of the outlet combustion gas satisfactorily

    ZnO Polymeric Composite Films for n-Decane Removal from Air Streams in a Continuous Flow NETmix Photoreactor under UVA Light

    No full text
    Polymeric composite films have been explored for many photocatalytic applications, from water treatment to self-cleaning devices. Their properties, namely, thickness and porosity, are controlled mainly by the preparation conditions. However, little has been discussed on the effect of thickness and porosity of polymeric composite films for photocatalytic processes, especially in gas phase. In the present study, different preparation treatments of ZnO-based polymeric composite films and their effects on its performance and stability were investigated. The polymeric composites were prepared by solution mixing followed by non-solvent induced phase separation (NIPS), using poly(vinylidene fluoride) (PVDF) as the matrix and ZnO-based photocatalysts. Different wet thickness, photocatalyst mass, and treatments (e.g., using or not pore-forming agent and compatibilizer) were assessed. A low ZnO/PVDF ratio and higher wet thickness, together with the use of pore-forming agent and compatibilizer, proved to be a good strategy for increasing photocatalytic efficiency given the low agglomerate formation and high polymer transmittance. Nonetheless, the composites exhibited deactivation after several minutes of exposure. Characterization by XRD, FTIR-ATR, and SEM were carried out to further investigate the polymeric film treatments and stability. ZnO film was most likely deactivated due to zinc carbonate formation intensified by the polymer presence
    corecore