40 research outputs found

    Transmission electron microscopy for characterization of acrosomal damage after Percoll gradient centrifugation of cryopreserved bovine spermatozoa

    Get PDF
    The objective of this study was to characterize acrosomal ultrastructure following discontinuous Percoll gradient centrifugation of cryopreserved bovine sperm. Semen was collected from six bulls of different breeds and three ejaculates per bull were evaluated. Frozen semen samples were thawed and the acrosomal region of sperm cells was evaluated by transmission electron microscopy (TEM) before (n = 18) and after (n = 18) Percoll centrifugation. The evaluation of 20 sperm heads from each of the 36 samples analyzed ensured that a large number of cells were investigated. The data were subjected to analysis of variance at a level of significance of 5%. Percoll centrifugation reduced the percentage of sperm exhibiting normal acrosomes (from 61.77 to 30.24%), reduced the percentage of sperm presenting atypical acrosome reactions (from 28.38 to 4.84%) and increased the percentage of sperm exhibiting damage in the acrosome (from 6.14 to 64.26%). The percentage of sperm with typical acrosome reactions was not significantly different before (3.70%) and after (0.67%) centrifugation. TEM distinguished four different types of acrosomal status and enabled ultrastructural characterization of acrosomal injuries. The percentage of sperm exhibiting normal acrosomes decreased and damage in the acrosome was the most frequent acrosomal injury with the Percoll gradient centrifugation protocol utilized

    Periodic Host Absence Can Select for Higher or Lower Parasite Transmission Rates

    Get PDF
    This paper explores the effect of discontinuous periodic host absence on the evolution of pathogen transmission rates by using Ro maximisation techniques. The physiological consequence of an increased transmission rate can be either an increased virulence, i.e. there is a transmission-virulence trade-off or ii) a reduced between season survival, i.e. there is a transmission-survival trade-off. The results reveal that the type of trade-off determines the direction of selection, with relatively longer periods of host absence selecting for higher transmission rates in the presence of a trade-off between transmission and virulence but lower transmission rates in the presence of a trade-of between transmission and between season survival. The fact that for the transmission-virulence trade-off both trade-off parameters operate during host presence whereas for the transmission-survival trade-off one operates during host presence (transmission) and the other (survival) during the period of host absence is the main cause for this difference in selection direction. Moreover, the period of host absence seems to be the key determinant of the pathogens transmission rate. Comparing plant patho-systems with contrasting biological features suggests that airborne plant pathogen respond differently to longer periods of host absence than soil-borne plant pathogens
    corecore