30 research outputs found

    Quantitative assessment of renal perfusion and oxygenation by invasive probes: basic concepts

    Get PDF
    Renal tissue hypoperfusion and hypoxia are early key elements in the pathophysiology of acute kidney injury of various origins, and may also promote progression from acute injury to chronic kidney disease. Here we describe basic principles of methodology to quantify renal hemodynamics and tissue oxygenation by means of invasive probes in experimental animals. Advantages and disadvantages of the various methods are discussed in the context of the heterogeneity of renal tissue perfusion and oxygenation.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by a separate chapter describing the experimental procedure and data analysis

    Therapeutic potential of mega‐dose vitamin C to reverse organ dysfunction in sepsis and COVID‐19

    No full text
    Sepsis induced by bacteria or viruses can result in multiorgan dysfunction, which is a major cause of death in intensive care units. Current treatments are only supportive, and there are no treatments that reverse the pathophysiological effects of sepsis. Vitamin C has antioxidant, anti-inflammatory, anticoagulant and immune modulatory actions, so it is a rational treatment for sepsis. Here, we summarise data that support the use of megadose vitamin C as a treatment for sepsis and COVID-19. Megadose intravenous sodium ascorbate (150 g per 40 kg over 7 h) dramatically improved the clinical state and cardiovascular, pulmonary, hepatic and renal function and decreased body temperature, in a clinically relevant ovine model of Gram-negative bacteria-induced sepsis. In a critically ill COVID-19 patient, intravenous sodium ascorbate (60 g) restored arterial pressure, improved renal function and increased arterial blood oxygen levels. These findings suggest that megadose vitamin C should be trialled as a treatment for sepsis and COVID-19

    Role of perioperative hypotension in postoperative acute kidney injury: a narrative review

    No full text
    Perioperative hypotension is common and associated with poor outcomes, including acute kidney injury (AKI). The mechanistic link between perioperative hypotension and AKI is at least partly a consequence of the susceptibility of the kidney, and particularly the renal medulla, to ischaemia and hypoxia. Several critical gaps in our knowledge lead to uncertainty about when and how to intervene to prevent AKI attributable to perioperative hypotension. First, although we know that the risk of AKI varies with both the severity and duration of hypotensive episodes, 'safe' levels of arterial pressure have not been identified. Second, there have been few adequately powered clinical trials of interventions to avoid perioperative hypotension. Thus, most evidence surrounding perioperative hypotension is observational rather than based on randomised clinical trials. This means that the link between perioperative hypotension and AKI may represent association (where both phenomena reflect illness severity) rather than causation. Third, there is little information regarding the relative risks and benefits of various clinically available therapies (e.g. vasoconstrictors, i.v. fluids, or both) to treat and prevent perioperative hypotension, particularly with regard to renal medullary perfusion and oxygenation. Fourth, there are currently no validated, clinically feasible methods for real-time clinical monitoring of renal perfusion or oxygenation. Thus, future developments in perioperative kidney-protective strategies must rely on the development of methods to better monitor renal perfusion and oxygenation in the perioperative period, and thereby guide timing, intensity, type, and duration of interventions

    Blunted Sodium Excretion in Response to a Saline Load in 5 Year Old Female Sheep Following Fetal Uninephrectomy

    No full text
    Previously, we have shown that fetal uninephrectomy (uni-x) causes hypertension in female sheep by 2 years of age. Whilst the hypertension was not exacerbated by 5 years of age, these uni-x sheep had greater reductions in renal blood flow (RBF). To further explore these early indications of a decline in renal function, we investigated the renal response to a saline load (25 ml/kg/40 min) in 5-year old female uni-x and sham sheep. Basal mean arterial pressure was ∼15 mmHg greater (P(Group)<0.001), and sodium excretion (∼50%), glomerular filtration rate (∼30%, GFR) and RBF (∼40%) were all significantly lower (P(Group)<0.01) in uni-x compared to sham animals. In response to saline loading, sodium excretion increased significantly in both groups (P(Time)<0.001), however this response was blunted in uni-x sheep (P(GroupxTime)<0.01). This was accompanied with an attenuated increase in GFR and fractional sodium excretion (both P(GroupxTime)<0.05), and reduced activation of the renin-angiotensin system (both P<0.05), as compared to the sham group. The reduction in sodium excretion was associated with up-regulations in the renal gene expression of NHE3 and Na(+)/K(+) ATPase α and β subunits in the kidney cortex of the uni-x compared to the sham animals (P<0.05). Notably, neither group completely excreted the saline load within the recovery period, but the uni-x retained a higher percentage of the total volume (uni-x: 48±7%; sham: 22±9%, P<0.05). In conclusion, a reduced ability to efficiently regulate extracellular fluid homeostasis is evident in female sheep at 5 years of age, which was exacerbated in animals born with a congenital nephron deficit. Whilst there was no overt exacerbation of hypertension and renal insufficiency with age in the uni-x sheep, these animals may be more vulnerable to secondary renal insults

    Effects of selective beta 1-adrenoceptor blockade on cardiovascular and renal function and circulating cytokines in ovine hyperdynamic sepsis

    Get PDF
    INTRODUCTION: Activation of the sympathetic nervous system has beneficial cardiovascular effects in sepsis, but there is also evidence that sympatholytics have beneficial actions in sepsis. We therefore determined the effect of selective β1-adrenoceptor blockade on cardiac and renal function and cytokine release in ovine hyperdynamic sepsis. METHODS: Hyperdynamic sepsis was induced by infusion of live E. coli for 24 hours in nine conscious sheep instrumented with flow probes on the pulmonary and left renal artery. Cardiovascular and renal function and levels of plasma cytokines were determined in a control group and during selective β1-adrenoceptor blockade with atenolol (10 mg intravenous bolus then 0.125 mg/kg/h) from 8 to 24 hours of sepsis. RESULTS: Hyperdynamic sepsis was characterized by hypotension with increases in cardiac output (CO), heart rate (HR) and renal blood flow (RBF), and acute kidney injury. Atenolol caused sustained reductions in HR (P < 0.001) and CO (P < 0.001). Despite the lower CO the sepsis-induced fall in mean arterial pressure (MAP) was similar in both groups. The sepsis-induced increase in RBF, decrease in renal function and increase in arterial lactate were unaffected by atenolol. Sepsis increased plasma levels of tumour necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and IL-10. Atenolol caused a further increase in IL-10, but did not affect levels of TNF-α or IL-6. CONCLUSIONS: In sepsis, selective β1-adrenoceptor blockade reduced CO, but not MAP. During sepsis, atenolol did not alter the development of acute kidney injury or the levels of pro-inflammatory cytokines, but enhanced the release of IL-10. Atenolol appears safe in sepsis, has no deleterious cardiovascular or renal effects, and has an anti-inflammatory effect

    Sepsis-induced acute kidney injury: A disease of the microcirculation

    Get PDF
    AKI is a common complication of sepsis and is significantly associated with mortality. Sepsis accounts for more than 50% of the cases of AKI, with a mortality rate of up to 40%. The pathogenesis of septic AKI is complex, but there is emerging evidence that, at least in the first 48 hours, the defects may be functional rather than structural in nature. For example, septic AKI is associated with an absence of histopathological changes, but with microvascular abnormalities and tubular stress. In this context, renal medullary hypoxia due to redistribution of intra-renal perfusion is emerging as a critical mediator of septic AKI. Clinically, vasopressor drugs remain the cornerstone of therapy for maintenance of blood pressure and organ perfusion. However, in septic AKI, there is insensitivity to vasopressors such as norepinephrine, leading to persistent hypotension and organ failure. Vasopressin, angiotensin II, and, paradoxically, α2 -adrenergic receptor agonists (clonidine and dexmedetomidine) may be feasible adjunct therapies for catecholamine-resistant vasodilatory shock. In this review, we outline the recent progress made in understanding how these drugs may influence the renal microcirculation, which represents a crucial step toward developing better approaches for the circulatory management of patients with septic AKI
    corecore