5 research outputs found

    A Reconfigurable Fabric for Accelerating Large-Scale Datacenter Services

    Get PDF
    Datacenter workloads demand high computational capabilities, flexibility, power efficiency, and low cost. It is challenging to improve all of these factors simultaneously. To advance datacenter capabilities beyond what commodity server designs can provide, we designed and built a composable, reconfigurable hardware fabric based on field programmable gate arrays (FPGA). Each server in the fabric contains one FPGA, and all FPGAs within a 48-server rack are interconnected over a low-latency, high-bandwidth network. We describe a medium-scale deployment of this fabric on a bed of 1632 servers, and measure its effectiveness in accelerating the ranking component of the Bing web search engine. We describe the requirements and architecture of the system, detail the critical engineering challenges and solutions needed to make the system robust in the presence of failures, and measure the performance, power, and resilience of the system. Under high load, the large-scale reconfigurable fabric improves the ranking throughput of each server by 95% at a desirable latency distribution or reduces tail latency by 29% at a fixed throughput. In other words, the reconfigurable fabric enables the same throughput using only half the number of servers

    Fully persistent B+-trees

    No full text

    A reconfigurable fabric for accelerating large-scale datacenter services

    No full text
    Datacenter workloads demand high computational capabili-ties, flexibility, power efficiency, and low cost. It is challenging to improve all of these factors simultaneously. To advance dat-acenter capabilities beyond what commodity server designs can provide, we have designed and built a composable, recon-figurable fabric to accelerate portions of large-scale software services. Each instantiation of the fabric consists of a 6x8 2-D torus of high-end Stratix V FPGAs embedded into a half-rack of 48 machines. One FPGA is placed into each server, acces-sible through PCIe, and wired directly to other FPGAs with pairs of 10 Gb SAS cables. In this paper, we describe a medium-scale deployment of this fabric on a bed of 1,632 servers, and measure its efficacy in accelerating the Bing web search engine. We describe the requirements and architecture of the system, detail the critical engineering challenges and solutions needed to make the system robust in the presence of failures, and measure the performance, power, and resilience of the system when ranking candidate documents. Under high load, the large-scale reconfigurable fabric improves the ranking throughput of each server by a factor of 95 % for a fixed latency distribution— or, while maintaining equivalent throughput, reduces the tail latency by 29%. 1
    corecore