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Abstract
Datacenter workloads demand high computational capa-
bilities, flexibility, power efficiency, and low cost. It is chal-
lenging to improve all of these factors simultaneously. To 
advance datacenter capabilities beyond what commodity 
server designs can provide, we designed and built a com-
posable, reconfigurable hardware fabric based on field 
programmable gate arrays (FPGA). Each server in the fabric 
contains one FPGA, and all FPGAs within a 48-server rack are 
interconnected over a low-latency, high-bandwidth network.

We describe a medium-scale deployment of this fabric 
on a bed of 1632 servers, and measure its effectiveness in 
accelerating the ranking component of the Bing web search 
engine. We describe the requirements and architecture of 
the system, detail the critical engineering challenges and 
solutions needed to make the system robust in the presence 
of failures, and measure the performance, power, and resil-
ience of the system. Under high load, the large-scale recon-
figurable fabric improves the ranking throughput of each 
server by 95% at a desirable latency distribution or reduces 
tail latency by 29% at a fixed throughput. In other words, the 
reconfigurable fabric enables the same throughput using 
only half the number of servers.

1. INTRODUCTION
Cloud computing has emerged as a dominant paradigm for 
delivering scalable, reliable, and cost-effective online ser-
vices to businesses and clients across the world. According 
to the IDC, public spending in IT cloud services will grow 
to more than $127B in 2016 as the adoption of cloud com-
puting accelerates worldwide.10 This major shift will offer 
enormous potential in unlocking new applications and in 
improving the performance, security, and cost of computing.

The majority of today’s cloud services are realized using 
datacenters, which typically comprise tens if not hundreds 
of thousands of servers built from commodity components 
such as general-purpose processors, memory, storage, and 
networking. Datacenters are shared across applications and 
services, providing economies of scale, reliability, scalabil-
ity, and shared infrastructure management.

Datacenter operators have traditionally relied upon con-
tinuous improvements in the performance and efficiency of 
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general-purpose processors to make datacenters even more 
powerful and cost-effective. These improvements have been 
largely driven by Moore’s law that predicts an exponential 
growth in the number of transistors over time, and by Dennard 
scaling8 that predicts constant power consumption even as 
the number of transistors increase within a fixed silicon area.

In recent years, Dennard scaling has virtually ended, result-
ing in power consumption being roughly proportional to the 
number of switching transistors. Thus, even though Moore’s 
law continues to provide more transistors for the time being, 
a larger number of transistors must switch proportionally 
less frequently to maintain constant power consumption. In 
addition, as transistors become smaller, they are becoming 
more expensive to manufacture, making it even less attrac-
tive to pack more and more transistors onto a single chip.

1.1. Specialized hardware in the datacenter
One way to improve the performance and efficiency of data-
center servers is to make better uses of “power-limited” 
transistors by specializing servers and their components 
to a particular task. In the academic literature, specializa-
tion has been shown to achieve 10×–100× or more improve-
ment in energy efficiency over general-purpose processors 
in many cases, such as for Memcached5, 14 compression/
decompression,13, 15 K-means clustering,9, 12 and parts of web 
search.20 However, while specializing servers for specific 
workloads can provide significant efficiency gains, doing so 
is problematic in the datacenter for several major reasons.

First, datacenters, by their very nature, support a wide 
variety of applications and specializing for one service will 
likely cause inefficiencies and add cost to any other services 
sharing the platform. Second, specialization compromises 
homogeneity, which is highly desirable in the datacenter 
environment to reduce management issues and to provide 
a consistent platform on which applications can rely upon. 
Third, datacenter services evolve rapidly, making highly 
specialized hardware features impractical and quickly 
obsoleted. Thus, datacenter providers face a conundrum: 
they need continued improvements in performance and 
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efficiency, but cannot obtain those improvements from any 
combination of standard general-purpose processors and 
static specialized hardware.

1.2. Flexible specialized hardware
Programmable hardware, in the form of field programmable 
gate arrays (FPGAs), are devices that could potentially reconcile 
the need for both flexibility and energy efficiency. FPGAs can 
be imagined as silicon “Legos”—collections of simple logic 
blocks that can be configured and composed to implement 
arbitrary circuits that run at very high efficiency relative to gen-
eral-purpose processors. While less energy efficient than hard-
wired Application Specific Integrated Circuits (ASICs), FPGAs 
can be rapidly reconfigured and adapted to changing work-
loads over the lifetime of the server. However, as of this writing, 
FPGAs have not been widely deployed as compute accelerators 
in either datacenter infrastructure or client devices.

One challenge traditionally associated with FPGAs is the 
need to fit the accelerated function into the available recon-
figurable area on one chip. Today’s FPGAs can be virtualized 
using runtime reconfiguration to support more functions 
than could fit on a single device. However, the amount of 
state that needs to be saved and restored, along with cur-
rent reconfiguration times for standard FPGAs make this 
approach too slow to be practical. Multiple FPGAs could 
provide more silicon resources, but are extremely difficult 
to fit into a conventional datacenter server. Even if suffi-
cient space were available, multiple FPGAs per server would 
cost more, consume more power, are wasteful when there 
are more FPGAs than needed—and even less useful when 
there are still not enough FPGAs to implement the appli-
cation. On the other hand, being restricted to a single FPGA 
per server restricts the workloads that might be accelerated 
and could make the associated gains too small to justify 
the cost.

1.3. Catapult reconfigurable fabric
This article describes a reconfigurable fabric called Catapult, 
which uses FPGAs to provide the performance and efficiency 
gains of specialized hardware while simultaneously satisfy-
ing the strict requirements of the datacenter. As illustrated 
in Figure 1, the Catapult fabric is embedded into racks of 
servers in the form of a small board with a medium-sized 
FPGA and local DRAM attached to each server. A unique 
characteristic of Catapult is that FPGAs are directly wired 
together in a high-bandwidth, low-latency network, allowing 
services to allocate groups of FPGAs to provide the necessary 
reconfigurable area to implement the desired functionality.

While proving functionality on a small number of servers 
shows the potential of the design, datacenters are character-
ized by massive scales and severe power, cost, and reliability 
constraints. To demonstrate the potential of this technology 
at datacenter scale, we tested the Catapult reconfigurable 
fabric, running a widely deployed web search workload 
augmented with failure handling, on a bed of 1632 servers 
equipped with FPGAs. The experiments show that large 
gains in search throughput and latency are achievable on 
a real, complex commercial workload using the large-scale 
reconfigurable fabric.

Compared to a pure software implementation, the 
Catapult fabric achieves a 95% improvement in throughput 
at each ranking server with an equivalent latency distribu-
tion. At the same throughput as software, Catapult reduces 
tail latency by 29%. In other words, adding the FPGA enables 
the same throughput using only half the number of servers. 
The system is able to run stably for long periods, with a failure 
handling service quickly reconfiguring the fabric upon errors 
or machine failures. The rest of this article describes the 
Catapult architecture and our measurements in more detail.

2. BACKGROUND
FPGAs are digital chips that can be programmed (and 
reprogrammed) for implementing complex digital logic. 
Conceptually, FPGAs consist of an array of programmable logic 
elements, connected by a programmable routing network that 
carries signals from where they are generated to where they are 
consumed. Each of these features are controlled by memory 
cells that are configured by the end user. Designs for an FPGA 

Figure 1. Each server in a rack has a local FPGA attached to the host 
via PCI Express. FPGAs communicate with their neighbors using a 
private low-latency, high-bandwidth serial network. Multiple FPGAs 
can be allocated to a single service, such as the Bing ranking, 
without going through host CPUs.
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Figure 2. Block diagram representing one tile of an abstract FPGA. 
Each tile is composed of generic logic gates (L), embedded memory 
(RAMs), and specialized arithmetic units (DSPs). These basic tiles 
are replicated to create larger and larger FP-GAs.
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are typically developed in a hardware description language 
(HDL) such as VHDL or Verilog; these designs are compiled 
down to an FPGA program (called a bitstream), similar to how 
a software language is compiled into a software executable. 
However, specifying a design in HDL is significantly more 
complex than for a typical software language, and compilation 
may take hours to complete. Once the bitstream is generated, 
it can be loaded into an FPGA in a matter of seconds, configur-
ing the FPGA to implement the desired computation.

FPGAs cover a middle-ground in performance/efficiency 
and flexibility compared to fully custom ASICs and general-
purpose CPUs. General-purpose CPUs are the most flexible 
platform, capable of implementing any application. But this 
flexibility generally comes at the cost of a 100× or greater 
reduction in performance and energy efficiency compared 
to an ASIC designed for the same task. However, when the 
application changes, the CPU can still run the new applica-
tion by simply recompiling the software. When the target 
application for an ASIC changes, it likely requires designing 
a new chip—a process which typically takes months and car-
ries huge development costs.

FPGAs combine aspects of both CPUs and ASICs. They can 
be reprogrammed as applications change to provide CPU-
like flexibility, but the program produces hardware which is 
specialized to the application, providing performance and 
power efficiency closer to ASICs. The generic FPGA logic can 
be configured to exploit huge amounts of fine-grained par-
allelism and can implement very complex pipelined struc-
tures that can be several orders-of-magnitude faster and 
lower power than their software equivalents.

Modern FPGAs provide millions of gates of random logic 
and can include multiple megabytes of internal storage that 
supports thousands of reads and writes on every clock cycle. 
These chips also incorporate smaller fully custom blocks, 
such as complex embedded arithmetic elements (DSP 
blocks), high-speed I/O, IP protocol blocks, and may include 
complete microprocessors as well, either as hardened sub-
systems or by mapping the microprocessor logic into the 
programmable logic of the chip.

FPGAs have been available for several decades and they 
have huge potential for accelerating a wide variety of appli-
cations. Yet despite this promise, FPGAs have not been 
widely deployed as compute accelerators, even in datacen-
ter environments where their potential for flexibility, power 
efficiency, and performance should make them extremely 
attractive.

The Catapult architecture described here unlocks the 
potential of FPGAs in the datacenter. To achieve this, the 
architecture has to be distributed, scalable, robust, and 
work on real-world datacenter-scale workloads. In the fol-
lowing sections, we describe the architecture, and show 
how production workloads can finally unlock the potential 
efficiency and performance gains promised for so long by 
FPGAs.

3. CATAPULT ARCHITECTURE
Datacenters are a challenging environment for any new 
technology to succeed. The scale alone demands extremely 
high reliability, efficiency, and low cost. The rapid pace of 

application development requires flexibility and robust-
ness. And the physical constraints and uptime requirements 
make it largely impractical to modify or upgrade the hard-
ware after initial delivery.

To succeed in the datacenter environment, an FPGA-
based reconfigurable fabric must (at a minimum) meet the 
following requirements:

• preserve server homogeneity to avoid complex manage-
ment of heterogeneous servers,

• scale to large workloads that might not fit into a single 
FPGA,

• avoid consuming too much power or network 
bandwidth,

• avoid single points of failure, and have minimal impact 
on reliability,

• provide positive return on investment (ROI), and
• operate within the space and power confines of existing 

servers.

These requirements guided the architectural choices we 
made throughout the Catapult system development.

3.1. Integration
How to integrate FPGAs into the datacenter is perhaps the 
most important consideration when designing a recon-
figurable fabric. We investigated a variety of approaches 
which can be roughly broken into two categories based on 
how they integrate with conventional servers: “networked” 
and “integrated.” Networked designs add FPGAs to special 
FPGA-enabled servers, and arrange the servers either as 
entire racks of specialized servers or embedding some num-
ber of specialized servers in otherwise conventional racks. 
Integrated designs add FPGAs directly inside the conven-
tional servers, requiring no specialized servers and no net-
work communication to reach the FPGA.

Networked designs have been developed and deployed 
in High Performance Computing (HPC) environments. 
While HPC systems are not subject to the same scale, cost, 
power, and homogeneity constraints as the datacenter, they 
are one place where integrating FPGAs with CPUs has seen 
some success. Entire large systems have been built using 
only specialized servers, including the Cray XD-1,7 Novo-G,11 
and QP.18 Examples of specialized servers that could be inte-
grated with racks of conventional datacenter servers include 
the Convey HC-2,6 Maxeler MPC series,17 BeeCube BEE4,4 
and SRC MAPstation.19 In fact, embedding a few specialized 
servers into each rack is the approach that we first took early 
in the project. However, as we learned from our first proto-
type, the networked design approach is inappropriate for 
datacenter use for several reasons.

First, specialized racks and servers are single points of 
failure, where the failure of the specialized nodes impacts 
many dependent conventional servers—amplifying the 
impact to uptime and overall service reliability.

Second, specialized racks and servers require separate 
cooling and power provisioning, as well as different soft-
ware, firmware, and spare parts provisioning, making man-
agement and maintenance more difficult.
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inter-FPGA network are wired to a connector on the bottom 
of the board that plugs directly into the motherboard. To 
avoid changes to the server itself, we custom designed the 
board to fit within a small 10 cm × 9 cm × 16 mm slot occupy-
ing the rear of a 1U (4.45 cm high), half-width server, which 
offered sufficient power and cooling only for a standard 
25-Watt PCIe peripheral device. These physical constraints 
are challenging for FPGAs, but are prohibitive for modern 
compute-class Graphics Processing Units (GPUs).

3.4. Shell architecture
In typical FPGA programming environments, the user is 
often responsible for developing not only the application 
itself but also building and integrating system functions 
required for data marshaling, host-to-FPGA communica-
tion, and inter-chip FPGA communication (if available). 
System integration places a significant burden on the user 
and can often exceed the effort needed to develop the appli-
cation itself. This development effort is often not portable to 
other boards, making it difficult for applications to work on 
future platforms.

Motivated by the need for user productivity and design 
re-usability when targeting the Catapult fabric, we logically 
divide all programmable logic into two partitions: the shell 
and the role. The shell is a reusable portion of programma-
ble logic common across applications targeting the same 
board—while the role is the application logic itself, restricted 
to a large fixed region of the chip.

Figure 4 shows a block-level diagram of the shell archi-
tecture, consisting of PCIe with a custom DMA engine, two 
DRAM controllers, four high-speed inter-FPGA links run-
ning the Serial Lite III protocol, the torus network router, 
reconfiguration logic, single event upset (SEU) scrubbing, 
and debugging interfaces.

Role designers access convenient and well-defined inter-
faces and capabilities in the shell (e.g., PCIe, DRAM, rout-
ing, etc.) without concern for managing system correctness.

The common shell also simplifies software by ensuring 
that all applications support the same API functions for data 
movement, reconfiguration, and health monitoring. For 
example, we co-designed the PCIe core and DMA engine to 
achieve very low latency, taking fewer than 10 µs for transfers 

Third, all communication with these racks/servers goes 
through the existing network, which (in a datacenter) is not 
typically designed for the many-to-one communication pat-
terns to the specialized racks.

Finally, all communication between the portion of the 
application running on the conventional server and the por-
tion in the FPGA requires going over the network, which, even 
in the datacenter, can have high latency, unreliable deliv-
ery, and variable performance. This is particularly difficult 
when traffic is exhibiting the many-to-one communication 
pattern. The unreliable performance makes partitioning 
the application between CPU and FPGA extremely difficult, 
especially for latency-sensitive user-facing applications, and 
reduces the likelihood that an application can be benefi-
cially offloaded to the reconfigurable fabric.

These issues diminish in severity with an increas-
ingly distributed design. At the extreme is the integrated 
design—adding an FPGA to every server. In integrated 
designs, an FPGA failure only impacts one server. All serv-
ers have the same cooling and power constraints. CPU to 
FPGA communication does not need to go over the net-
work at all. And attaching the FPGA directly to the CPU 
greatly diminishes communication latency and variance, 
enabling finer-grain and more reliable offloading from the 
CPU to the FPGA.

The homogeneous nature of the integrated design 
enables additional benefits which are key to keeping the 
designs cost-effective. Homogeneous computing resources 
can be divided at arbitrary granularities, easing both short-
term and long-term provisioning of servers. Homogeneous 
designs also improve economies of scale leading to more 
cost-effective designs.

3.2. Scalability
On its own, integrating only one FPGA per server either lim-
its applications to those that can fit into the resources of a 
single FPGA or suffers the same high-latency and unreliabil-
ity problems with communicating over the network as spe-
cialized racks and servers.

To overcome this shortcoming, we built a specialized 
network, in addition to the existing Ethernet network, to 
facilitate FPGA-to-FPGA communication. This specialized 
network takes advantage of the low-latency, high-speed 
serial I/O available in the FPGAs to create a two-dimensional 
6 × 8 torus network. The torus topology balances routabil-
ity, resilience, and cabling complexity. Each inter-FPGA net-
work link supports 20 Gbits per second in both directions, at 
sub-microsecond latency per hop, and requires only passive 
copper cables with no additional networking costs such as 
network interface cards or switches. Another HPC system, 
Maxwell,3 takes a similar approach, but again targets HPC 
workloads and constraints.

3.3. FPGA board design
Figure 3 shows the FPGA board and the server into which it 
installs.16 The board incorporates a midrange Altera Stratix V 
D5 FPGA,2 which we selected to balance the cost of deploying 
thousands of FPGAs against the FPGA capacity. The board 
also includes two banks of DDR3-1600 DRAM. The PCIe and 

Figure 3. The FPGA board and the server into which it installs. 
(a) Block diagram of the FPGA board. (b) Picture of the manufactured 
board. (c) Diagram of the 1U, half-width server that hosts the FPGA 
board. The air flows from left to right, leaving the FPGA in the 
exhaust of both CPUs.
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that adding the FPGA card and network cost less than 30% in 
the total cost of ownership, including a limit of 10% for total 
server power.

3.7. Datacenter deployment
To test this architecture on a critical production-scale data-
center service at scale, we manufactured and deployed the 
fabric in a production datacenter. The deployment con-
sisted of a total of 1632 machines, that were organized into 
in 17 server racks. Each server uses two 12-core Intel Xeon 
CPUs, 64 Gbytes of DRAM, and two solid-state drives (SSDs) 
in addition to four hard-disk drives. The machines have 
a standard 10-Gbit Ethernet network card connected to a 
48-port top-of-rack switch, which in turn connects to the 
broader datacenter network. The FPGA daughter cards and 
cable assemblies were tested at manufacture and again at 
system integration. At deployment, we discovered that seven 
cards (0.4%) had a hardware failure and that one of the 3264 
links (0.03%) in the cable assemblies was defective. Since 
then, after several months of operation, we have seen no 
additional hardware failures.

4. APPLICATION CASE STUDY
To study the potential impact of the Catapult fabric, we 
ported a significant fraction of Microsoft Bing’s web search 
ranking engine into reconfigurable hardware. Aside from 
being a representative datacenter-scale workload, Bing  
consumes a significant fraction of the datacenter capacity 
at Microsoft and is used to power a number of popular ser-
vices such as Yahoo! Search, Apple Siri, and search on XBox 
One. As an interactive workload, Bing requires both low 
latency and high bandwidth simultaneously. Furthermore, 
Bing has strict resiliency requirements, is operationally com-
plex, and is programmed using tens of thousands of lines of 
production-quality C++ code—making it an excellent candi-
date for gauging the viability of reconfigurable computing at 
scale in a production environment.

In our case study, we devoted the majority of our efforts 
to the Ranking portion of the Bing search engine, which 
presented the largest opportunity for hardware accelera-
tion. Over 30K lines of C++ code were manually ported to the 
Catapult fabric using the Verilog HDL. The implementation 
generates results that are identical to software—even repro-
ducing known software bugs. As will be discussed in further 
detail below, our implementation requires a total of seven 
FPGAs to run a single instance of the service—plus one addi-
tional spare for redundancy. Without the availability of the 
low-latency, high-bandwidth network that interconnects 
multiple FPGAs, accelerating the Ranking service would not 
have been feasible.

4.1. Accelerating Bing ranking using FPGAs
The Bing search engine is logically divided into multiple 
software services spanning a large number of servers in the 
datacenter. When a user’s search query is processed by the 
Bing search engine, it is first submitted to a front-end cache 
service that stores and delivers the results of previously sub-
mitted and popular queries. If the search query cannot be 
located in the cache, it is forwarded to the Selection and 

of 16 KB or less, and multithreading safety. Software devel-
opers use simple send and receive calls to transmit data, and 
role designers simply read and write to the PCIe interface 
FIFOs.

The shell consumes 23% of each FPGA, although extra 
capacity can be obtained by discarding unused functions. If 
desired, partial reconfiguration allows for dynamic switch-
ing between roles while the shell remains active—even 
routing inter-FPGA traffic while a reconfiguration is taking 
place—but it comes at the cost of reduced logic area and 
RAM availability to the application.

3.5. Resiliency
At datacenter scales, providing resiliency in the face of 
hardware failures is essential given that such failures occur 
frequently, while demand for hardware availability is con-
sistently high. For instance, the fabric must stay available 
in the presence of errors, failing hardware, reboots, and 
updates to the implemented algorithm. FPGAs can poten-
tially corrupt their neighbors or crash the hosting servers 
if care is not taken during reconfiguration. Our reconfigu-
rable fabric further requires a custom protocol to recon-
figure groups of FPGAs, remap services to recover from 
failures, and report errors to the management software. In 
addition, ECC is used on all external memories, and SEU 
detection and correction is implemented on the FPGA’s 
configuration memory.

3.6. Total cost of ownership
To balance the expected per-server performance gains ver-
sus the necessary increase in total cost of ownership, includ-
ing both increased capital costs and operating expenses, 
we set aggressive power and cost goals to achieve a positive 
ROI. We are unable to give cost numbers for our production 
servers due to their business sensitivity; however, we can say 

Figure 4. Components of the shell architecture.
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Our FPGA accelerator achieves a significant advantage 
over software using a form of multiple-instruction, single-
data computation (MISD). In the FPGA, we instantiate 43 
unique feature-extraction state machines that are used to 
compute nearly 4500 features per document-query pair in 
parallel. Each feature is an independent instruction stream, 
and the data is a single document—hence the MISD par-
allelism—which the FPGA can exploit far more effectively 
than CPUs and GPUs.

Each state machine reads each hit vector one item at a 
time and performs a local calculation. For some features 
that have similar computations, a single state machine is 
responsible for calculating values for multiple features. As an 
example, the NumberOfOccurences feature simply counts up 
how many times each term (i.e., word) in the query appears. 
At the end of a document, the state machine outputs all non-
zero feature values; for NumberOfOccurences, this could be 
up to the number of terms in the query.

To support a large collection of state machines working 
in parallel on the same input data at a high clock rate, we 
organize the blocks into a tree-like hierarchy and replicate 
each input several times. Figure 6 shows the logical organi-
zation of the FE hierarchy. Hit vectors are fed into a hit vector 
processing state machine, which produces a series of control 
and data tokens that the various feature state machines proc-
ess. Each state machine processes each hit vector at a rate of 
one to two clock cycles per token. When a state machine fin-
ishes its computation, it emits one or more feature indexes 
and values that are fed into the feature-gathering network 
that coalesces the results from the 43 state machines into a 
single output stream for the downstream FFE stages. Inputs 
to FE are double buffered to increase throughput.

4.3. Free-Form expressions
FFEs are mathematical combinations of the features 
extracted during the feature-extraction stage. FFEs give 
developers a way to create hybrid features that are not con-
veniently specified as feature-extraction state machines. 
There are typically thousands of FFEs, ranging from simple 

Ranking services, which perform the actual computation 
needed to generate search results.

The Selection service is responsible for accepting a user 
query and selecting which of the billions of documents (e.g., 
web pages) on the Internet are worthwhile candidates. The 
Ranking service further takes these selected documents and 
runs them through a sophisticated ranking algorithm that 
determines the order in which these documents should be 
presented to the user.

The input to the Bing Ranking algorithm is a “hit vector” 
that corresponds to a document-query pair arriving from the 
upstream Selection service. A hit vector efficiently encodes 
the locations in which words in a user’s query appear 
within a given document (e.g., web page). The output of the 
Ranking algorithm is a document “score,” which is used to 
determine the position in which the document is presented 
to the user.

Conceptually, the Bing ranking algorithm is divided into 
three major stages: (1) Feature Extraction (FE), (2) Free-
Form Expressions (FFE), and (3) Machine-Learned Scoring 
(MLS). Figure 5 illustrates a hardware processing pipeline 
that allocates these stages to an eight-node FPGA pipeline: 
one FPGA for FE, two for FFEs, one for a compression stage 
that increases scoring engine efficiency, and three for MLS. 
The eighth FPGA is a spare that allows the ring to be recon-
figured and rotated to keep the ranking pipeline alive in the 
event of a failure.

4.2. Feature extraction
In FE, interesting characteristics of a given document are 
dynamically extracted based on a user’s search query. As a 
simple example, the NumberOfOccurences feature simply 
counts up the number of times a query happens to appear 
within a given document. In Bing Ranking, there are poten-
tially up to thousands of features that are computed for a 
given document-query pair.

Figure 5. Mapping of ranking roles to FPGAs on the reconfigurable 
fabric. Data is sent from each server to the queue manager. It is then 
dispatched through the seven FPGA computation stages, and the 
results are sent back to the source server.
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feature state machines. The feature-gathering network collects 
generated feature and value pairs and forwards them to the next 
pipeline stage.

Hit vector 
preprocessing 

FSM

Feature-
gathering
network

Feature Extraction FSMs



research highlights 

 

120    COMMUNICATIONS OF THE ACM    |   NOVEMBER 2016  |   VOL.  59  |   NO.  11

4.5. Parallelism
To overcome the slower clock frequency of FPGAs rela-
tive to CPUs and GPUs, each of the scoring stages takes 
advantage of two forms of parallelism that are not easily 
handled by the other architectures. First, each processing 
stage described here is configured with deep pipelines that 
match the amount of pipeline parallelism available in the 
application.

Second, FE and FFE exhibit multiple instruction single 
data (MISD) parallelism, a cousin of the more commonly 
known single instruction multiple data (SIMD) parallelism 
exploited by GPUs and the vector processing units in CPUs. 
A single source of data (the document) is operated on by a 
very large number of independent instruction streams (fea-
ture extractors and free form expressions for FE and FFE, 
respectively). SIMD architectures require the opposite—a 
large number of independent data elements operated on by 
the same instruction stream.

While SIMD architectures can efficiently process applica-
tions with MISD parallelism by batching many sets of data 
together, this comes at the cost of increased latency, which 
is often prohibitive in interactive cloud applications such as 
web search. As such, web ranking is an example of a cloud 
application that FPGAs can accelerate more effectively other 
parallel processing architectures.

5. EVALUATION
We evaluated the Catapult fabric by deploying and mea-
suring the described Bing ranking engine on a bed of 1632 
servers with FPGAs. Six hundred and seventy-two ran the 
ranking service, and the other machines ran the selection 
service to feed documents and queries to the ranking serv-
ers. We compare the average and tail latency distributions 
of Bing’s production-level ranker running with and without 
FPGAs on that bed.

User experience is dictated determined more by tail 
latencies rather than average latencies—users care little 
if their search results come back faster than expected, but 
they become unhappy quickly if the results are slower than 
expected. As such, we report performance at the latency of 
the 95th percentile of queries—the time at which only 5% 
of queries are slower. Performance results are very simi-
lar for average latency queries (50th percentile), and are 
even better for higher tail latencies (99th percentile and 
99.9th percentile), which have the biggest impact on user 
experience.

Figure 8 illustrates how the FPGA-accelerated ranker 
substantially reduces the end-to-end scoring latency and 
improves throughput relative to software. There are two ways 
to view the performance improvements on this graph. First, 
for a fixed point on the x-axis, it shows the improvement in 
throughput at that specified query latency. For example, at 
1.0 (which represent the maximum acceptable latency to 
Bing at the 95th percentile), the FPGA achieves a 95% gain in 
scoring throughput relative to software.

Second, for a fixed point on the y-axis, it shows the 
improvement in response time at a given throughput. At 1.0, 
representing the average query load on a server, the FPGA 
reduces query latency by 29%. The improvement in FPGA 

(such as adding two features) to large and complex (with 
thousands of operations including conditional execution 
and complex floating-point operators such as ln, pow, and 
fpdiv). FFEs vary greatly across models, making it impracti-
cal to synthesize customized datapaths for each expression.

One potential solution is to tile many off-the-shelf soft 
processor cores (such as Nios II1), but these single-threaded 
cores are inefficient at processing thousands of threads 
with long-latency floating-point operations in the desired 
amount of time per macropipeline stage (8 ms). Instead, we 
developed a custom multicore processor with massive multi-
threading and long-latency operations in mind. The result is 
the FFE processor shown in Figure 7. The FFE microarchi-
tecture is highly area efficient, letting us instantiate 60 cores 
on a single FPGA.

The custom FFE processor has three key characteris-
tics that make it capable of executing all of the expressions 
within the required deadline. First, each core supports four 
simultaneous threads that arbitrate for functional units on 
a cycle-by-cycle basis. When one thread is stalled on a long 
operation such as a floating-point divide or natural log oper-
ation, other threads continue to make progress. All func-
tional units are fully pipelined, so any unit can accept a new 
operation on each cycle.

Second, rather than fair thread scheduling, threads are 
statically prioritized using a priority encoder. The assembler 
maps the expressions with the longest expected latency to 
thread slot 0 on all cores, then fills in slot 1 on all cores, and 
so forth. Once all cores have one thread in each thread slot, 
the remaining threads are appended to the end of previously 
mapped threads, starting again at thread slot 0.

Third, the longest-latency expressions are split across 
multiple FPGAs. An upstream FFE unit can perform part of 
the computation and produce an intermediate result called 
a metafeature. These metafeatures are sent to the down-
stream FFEs like any other feature, effectively replacing that 
part of the expression computation with a simple feature 
read.

4.4. Document scoring
The last stage of the pipeline is a machine-learned model 
evaluator that takes the features and FFEs as inputs and pro-
duces a single floating-point score. This score is sent back 
to the search software, and all of the resulting scores for the 
query are sorted and returned to the user in sorted order as 
the search results.

Figure 7. Free-form expressions (FFEs) placed and routed on an FPGA. 
Sixty cores fit on a single FPGA.
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not exceed our 30% limit in an individual server’s total cost 
of ownership, yielding a significant overall improvement in 
system efficiency and TCO.

Reconfigurable fabrics based on FPGAs are not the 
only accelerator platform that we considered. GPUs are 
one option for accelerating large-scale workloads, and 
when we first began we considered using GPUs. However, 
the SIMD parallelism that GPUs handle so efficiently are 
not a good match for latency-sensitive, but highly diver-
gent ranking stages (such as FE). In addition, the high 
power consumption of GPUs meant that they couldn’t 
be easily incorporated into conventional servers, which 
only have power and cooling provisioning for a standard 
25W PCIe card. Instead, they are likely more appropriate 
for HPC environments rather than widespread datacen-
ter deployment.

We conclude that distributed reconfigurable fabrics are a 
viable path forward as increases in server performance level 
off, and will be crucial at the end of Moore’s law for contin-
ued cost and capability improvements in cloud computing. 
Reconfigurability is a critical means by which hardware 
acceleration can keep pace with the rapid rate of change in 
datacenter services.

Going forward, the biggest obstacle to widespread 
adoption of FPGAs in the datacenter is likely to be pro-
grammability. FPGA development still requires exten-
sive hand-coding in Register Transfer Level and manual 
tuning. Yet we believe that incorporating careful HW/
SW co-design of custom ISAs such as those used in FE 
and FFE, domain-specific languages such as OpenCL, 
FPGA-targeted C-to-gates tools, and libraries of reusable 
components and design patterns, will be sufficient to 
permit high-value services to be productively targeted 
to FPGAs. Longer term, improvements in FPGA archi-
tectures for computing, more integrated development 
tools, and the design of languages and tools that con-
sider accelerator offload as a core functionality will be 
necessary to increase the programmability of these fab-
rics beyond teams of specialists working with large-scale 
service developers. Within 10–15 years, well past the end 
of Moore’s Law, we believe that compilation to a combi-
nation of hardware and software will be commonplace. 
Reconfigurable systems, such as the Catapult fabric pre-
sented here, will be necessary to support these hybrid 
computation models.
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scoring latency increases further at higher injection rates, 
because the variability of software latency increases at 
higher loads (due to contention in the CPU’s memory hier-
archy), whereas the FPGA’s performance remains stable. 
This improved stability means that the FPGA is capable of 
absorbing bursts of traffic better than software alone, which 
may reduce the need for overprovisioning for bursty traffic.

Given that FPGAs can be used to improve both latency 
and throughput, Bing could reap the benefits in many 
ways. For example, for equivalent ranking capacity, fewer 
servers can be purchased. At the current average query 
rate, Bing could use roughly half the number of servers 
and still achieve their performance targets while achiev-
ing massive cost savings. As another example, the faster 
response time means that additional capabilities and fea-
tures can be added to the software and/or hardware stack 
to improve the quality of searches without exceeding the 
maximum allowed latency. Of course, a combination of 
the two is also possible.

6. CONCLUSION
For many years, FPGAs have shown promise for accelerating 
many computational tasks. Yet despite the huge potential, 
they have not yet become mainstream in modern datacen-
ters. Our goal in building the Catapult fabric was to under-
stand what problems must be solved to operate FPGAs at 
datacenter scale, and whether significant performance 
improvements are achievable for large-scale production 
workloads, especially workloads that change over the life-
time of the servers.

We found that efficiently mapping a significant portion 
of a complex datacenter workload to FPGAs is both possible 
and provides a significant ROI. We showed that an at-scale 
deployment of FPGAs can increase ranking throughput in 
a production search infrastructure by 95% at comparable 
latency to a software-only solution, making possible both 
cost savings with fewer servers needed and headroom for 
improved search algorithms. We achieved this without 
breaking the homogeneous architecture of data-center serv-
ers, and without increasing the server failure rate. The added 
FPGA boards increased power consumption by only 10%, did 

Figure 8. Achievable performance within a given latency bound. 
The points on the x-axis at 1.0 shows the maximum sustained 
throughputs on both the FPGA and software while satisfying Bing’s 
target for latency at the 95th percentile.
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