
114 COMMUNICATIONS OF THE ACM | NOVEMBER 2016 | VOL. 59 | NO. 11

research highlights

DOI:10.1145/2996868

A Reconfigurable Fabric for
Accelerating Large-Scale
Datacenter Services
By Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Constantinides, John Demme,
Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal, Jan Gray, Michael Haselman, Scott Hauck,
Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka, James Larus, Eric Peterson, Simon Pope,
Aaron Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger

Abstract
Datacenter workloads demand high computational capa-
bilities, flexibility, power efficiency, and low cost. It is chal-
lenging to improve all of these factors simultaneously. To
advance datacenter capabilities beyond what commodity
server designs can provide, we designed and built a com-
posable, reconfigurable hardware fabric based on field
programmable gate arrays (FPGA). Each server in the fabric
contains one FPGA, and all FPGAs within a 48-server rack are
interconnected over a low-latency, high-bandwidth network.

We describe a medium-scale deployment of this fabric
on a bed of 1632 servers, and measure its effectiveness in
accelerating the ranking component of the Bing web search
engine. We describe the requirements and architecture of
the system, detail the critical engineering challenges and
solutions needed to make the system robust in the presence
of failures, and measure the performance, power, and resil-
ience of the system. Under high load, the large-scale recon-
figurable fabric improves the ranking throughput of each
server by 95% at a desirable latency distribution or reduces
tail latency by 29% at a fixed throughput. In other words, the
reconfigurable fabric enables the same throughput using
only half the number of servers.

1. INTRODUCTION
Cloud computing has emerged as a dominant paradigm for
delivering scalable, reliable, and cost-effective online ser-
vices to businesses and clients across the world. According
to the IDC, public spending in IT cloud services will grow
to more than $127B in 2016 as the adoption of cloud com-
puting accelerates worldwide.10 This major shift will offer
enormous potential in unlocking new applications and in
improving the performance, security, and cost of computing.

The majority of today’s cloud services are realized using
datacenters, which typically comprise tens if not hundreds
of thousands of servers built from commodity components
such as general-purpose processors, memory, storage, and
networking. Datacenters are shared across applications and
services, providing economies of scale, reliability, scalabil-
ity, and shared infrastructure management.

Datacenter operators have traditionally relied upon con-
tinuous improvements in the performance and efficiency of

The original version of this paper was published in the
Proceedings for the 41st ACM/IEEE International Symposium
on Computer Architecture (June 14–18, 2014, Minneapolis,
MN), 13–24.

general-purpose processors to make datacenters even more
powerful and cost-effective. These improvements have been
largely driven by Moore’s law that predicts an exponential
growth in the number of transistors over time, and by Dennard
scaling8 that predicts constant power consumption even as
the number of transistors increase within a fixed silicon area.

In recent years, Dennard scaling has virtually ended, result-
ing in power consumption being roughly proportional to the
number of switching transistors. Thus, even though Moore’s
law continues to provide more transistors for the time being,
a larger number of transistors must switch proportionally
less frequently to maintain constant power consumption. In
addition, as transistors become smaller, they are becoming
more expensive to manufacture, making it even less attrac-
tive to pack more and more transistors onto a single chip.

1.1. Specialized hardware in the datacenter
One way to improve the performance and efficiency of data-
center servers is to make better uses of “power-limited”
transistors by specializing servers and their components
to a particular task. In the academic literature, specializa-
tion has been shown to achieve 10×–100× or more improve-
ment in energy efficiency over general-purpose processors
in many cases, such as for Memcached5, 14 compression/
decompression,13, 15 K-means clustering,9, 12 and parts of web
search.20 However, while specializing servers for specific
workloads can provide significant efficiency gains, doing so
is problematic in the datacenter for several major reasons.

First, datacenters, by their very nature, support a wide
variety of applications and specializing for one service will
likely cause inefficiencies and add cost to any other services
sharing the platform. Second, specialization compromises
homogeneity, which is highly desirable in the datacenter
environment to reduce management issues and to provide
a consistent platform on which applications can rely upon.
Third, datacenter services evolve rapidly, making highly
specialized hardware features impractical and quickly
obsoleted. Thus, datacenter providers face a conundrum:
they need continued improvements in performance and

All authors contributed to this work while employed by Microsoft.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148027617?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1145/2996868

NOVEMBER 2016 | VOL. 59 | NO. 11 | COMMUNICATIONS OF THE ACM 115

efficiency, but cannot obtain those improvements from any
combination of standard general-purpose processors and
static specialized hardware.

1.2. Flexible specialized hardware
Programmable hardware, in the form of field programmable
gate arrays (FPGAs), are devices that could potentially reconcile
the need for both flexibility and energy efficiency. FPGAs can
be imagined as silicon “Legos”—collections of simple logic
blocks that can be configured and composed to implement
arbitrary circuits that run at very high efficiency relative to gen-
eral-purpose processors. While less energy efficient than hard-
wired Application Specific Integrated Circuits (ASICs), FPGAs
can be rapidly reconfigured and adapted to changing work-
loads over the lifetime of the server. However, as of this writing,
FPGAs have not been widely deployed as compute accelerators
in either datacenter infrastructure or client devices.

One challenge traditionally associated with FPGAs is the
need to fit the accelerated function into the available recon-
figurable area on one chip. Today’s FPGAs can be virtualized
using runtime reconfiguration to support more functions
than could fit on a single device. However, the amount of
state that needs to be saved and restored, along with cur-
rent reconfiguration times for standard FPGAs make this
approach too slow to be practical. Multiple FPGAs could
provide more silicon resources, but are extremely difficult
to fit into a conventional datacenter server. Even if suffi-
cient space were available, multiple FPGAs per server would
cost more, consume more power, are wasteful when there
are more FPGAs than needed—and even less useful when
there are still not enough FPGAs to implement the appli-
cation. On the other hand, being restricted to a single FPGA
per server restricts the workloads that might be accelerated
and could make the associated gains too small to justify
the cost.

1.3. Catapult reconfigurable fabric
This article describes a reconfigurable fabric called Catapult,
which uses FPGAs to provide the performance and efficiency
gains of specialized hardware while simultaneously satisfy-
ing the strict requirements of the datacenter. As illustrated
in Figure 1, the Catapult fabric is embedded into racks of
servers in the form of a small board with a medium-sized
FPGA and local DRAM attached to each server. A unique
characteristic of Catapult is that FPGAs are directly wired
together in a high-bandwidth, low-latency network, allowing
services to allocate groups of FPGAs to provide the necessary
reconfigurable area to implement the desired functionality.

While proving functionality on a small number of servers
shows the potential of the design, datacenters are character-
ized by massive scales and severe power, cost, and reliability
constraints. To demonstrate the potential of this technology
at datacenter scale, we tested the Catapult reconfigurable
fabric, running a widely deployed web search workload
augmented with failure handling, on a bed of 1632 servers
equipped with FPGAs. The experiments show that large
gains in search throughput and latency are achievable on
a real, complex commercial workload using the large-scale
reconfigurable fabric.

Compared to a pure software implementation, the
Catapult fabric achieves a 95% improvement in throughput
at each ranking server with an equivalent latency distribu-
tion. At the same throughput as software, Catapult reduces
tail latency by 29%. In other words, adding the FPGA enables
the same throughput using only half the number of servers.
The system is able to run stably for long periods, with a failure
handling service quickly reconfiguring the fabric upon errors
or machine failures. The rest of this article describes the
Catapult architecture and our measurements in more detail.

2. BACKGROUND
FPGAs are digital chips that can be programmed (and
reprogrammed) for implementing complex digital logic.
Conceptually, FPGAs consist of an array of programmable logic
elements, connected by a programmable routing network that
carries signals from where they are generated to where they are
consumed. Each of these features are controlled by memory
cells that are configured by the end user. Designs for an FPGA

Figure 1. Each server in a rack has a local FPGA attached to the host
via PCI Express. FPGAs communicate with their neighbors using a
private low-latency, high-bandwidth serial network. Multiple FPGAs
can be allocated to a single service, such as the Bing ranking,
without going through host CPUs.

FPGA FPGA FPGA FPGAFFPGAFPGA FPGAFPGA

Web Search Pipeline

PCle (8.0 GB/s)
SLlll (2.0 GB/s)
400 ns latency
per hopServerServerServerServer

Figure 2. Block diagram representing one tile of an abstract FPGA.
Each tile is composed of generic logic gates (L), embedded memory
(RAMs), and specialized arithmetic units (DSPs). These basic tiles
are replicated to create larger and larger FP-GAs.

RAM RAM RAM RAM
DSP DSP DSP DSP

LL L L L

LL L L L

LL L L L

LL L L L

research highlights

116 COMMUNICATIONS OF THE ACM | NOVEMBER 2016 | VOL. 59 | NO. 11

are typically developed in a hardware description language
(HDL) such as VHDL or Verilog; these designs are compiled
down to an FPGA program (called a bitstream), similar to how
a software language is compiled into a software executable.
However, specifying a design in HDL is significantly more
complex than for a typical software language, and compilation
may take hours to complete. Once the bitstream is generated,
it can be loaded into an FPGA in a matter of seconds, configur-
ing the FPGA to implement the desired computation.

FPGAs cover a middle-ground in performance/efficiency
and flexibility compared to fully custom ASICs and general-
purpose CPUs. General-purpose CPUs are the most flexible
platform, capable of implementing any application. But this
flexibility generally comes at the cost of a 100× or greater
reduction in performance and energy efficiency compared
to an ASIC designed for the same task. However, when the
application changes, the CPU can still run the new applica-
tion by simply recompiling the software. When the target
application for an ASIC changes, it likely requires designing
a new chip—a process which typically takes months and car-
ries huge development costs.

FPGAs combine aspects of both CPUs and ASICs. They can
be reprogrammed as applications change to provide CPU-
like flexibility, but the program produces hardware which is
specialized to the application, providing performance and
power efficiency closer to ASICs. The generic FPGA logic can
be configured to exploit huge amounts of fine-grained par-
allelism and can implement very complex pipelined struc-
tures that can be several orders-of-magnitude faster and
lower power than their software equivalents.

Modern FPGAs provide millions of gates of random logic
and can include multiple megabytes of internal storage that
supports thousands of reads and writes on every clock cycle.
These chips also incorporate smaller fully custom blocks,
such as complex embedded arithmetic elements (DSP
blocks), high-speed I/O, IP protocol blocks, and may include
complete microprocessors as well, either as hardened sub-
systems or by mapping the microprocessor logic into the
programmable logic of the chip.

FPGAs have been available for several decades and they
have huge potential for accelerating a wide variety of appli-
cations. Yet despite this promise, FPGAs have not been
widely deployed as compute accelerators, even in datacen-
ter environments where their potential for flexibility, power
efficiency, and performance should make them extremely
attractive.

The Catapult architecture described here unlocks the
potential of FPGAs in the datacenter. To achieve this, the
architecture has to be distributed, scalable, robust, and
work on real-world datacenter-scale workloads. In the fol-
lowing sections, we describe the architecture, and show
how production workloads can finally unlock the potential
efficiency and performance gains promised for so long by
FPGAs.

3. CATAPULT ARCHITECTURE
Datacenters are a challenging environment for any new
technology to succeed. The scale alone demands extremely
high reliability, efficiency, and low cost. The rapid pace of

application development requires flexibility and robust-
ness. And the physical constraints and uptime requirements
make it largely impractical to modify or upgrade the hard-
ware after initial delivery.

To succeed in the datacenter environment, an FPGA-
based reconfigurable fabric must (at a minimum) meet the
following requirements:

• preserve server homogeneity to avoid complex manage-
ment of heterogeneous servers,

• scale to large workloads that might not fit into a single
FPGA,

• avoid consuming too much power or network
bandwidth,

• avoid single points of failure, and have minimal impact
on reliability,

• provide positive return on investment (ROI), and
• operate within the space and power confines of existing

servers.

These requirements guided the architectural choices we
made throughout the Catapult system development.

3.1. Integration
How to integrate FPGAs into the datacenter is perhaps the
most important consideration when designing a recon-
figurable fabric. We investigated a variety of approaches
which can be roughly broken into two categories based on
how they integrate with conventional servers: “networked”
and “integrated.” Networked designs add FPGAs to special
FPGA-enabled servers, and arrange the servers either as
entire racks of specialized servers or embedding some num-
ber of specialized servers in otherwise conventional racks.
Integrated designs add FPGAs directly inside the conven-
tional servers, requiring no specialized servers and no net-
work communication to reach the FPGA.

Networked designs have been developed and deployed
in High Performance Computing (HPC) environments.
While HPC systems are not subject to the same scale, cost,
power, and homogeneity constraints as the datacenter, they
are one place where integrating FPGAs with CPUs has seen
some success. Entire large systems have been built using
only specialized servers, including the Cray XD-1,7 Novo-G,11
and QP.18 Examples of specialized servers that could be inte-
grated with racks of conventional datacenter servers include
the Convey HC-2,6 Maxeler MPC series,17 BeeCube BEE4,4
and SRC MAPstation.19 In fact, embedding a few specialized
servers into each rack is the approach that we first took early
in the project. However, as we learned from our first proto-
type, the networked design approach is inappropriate for
datacenter use for several reasons.

First, specialized racks and servers are single points of
failure, where the failure of the specialized nodes impacts
many dependent conventional servers—amplifying the
impact to uptime and overall service reliability.

Second, specialized racks and servers require separate
cooling and power provisioning, as well as different soft-
ware, firmware, and spare parts provisioning, making man-
agement and maintenance more difficult.

NOVEMBER 2016 | VOL. 59 | NO. 11 | COMMUNICATIONS OF THE ACM 117

inter-FPGA network are wired to a connector on the bottom
of the board that plugs directly into the motherboard. To
avoid changes to the server itself, we custom designed the
board to fit within a small 10 cm × 9 cm × 16 mm slot occupy-
ing the rear of a 1U (4.45 cm high), half-width server, which
offered sufficient power and cooling only for a standard
25-Watt PCIe peripheral device. These physical constraints
are challenging for FPGAs, but are prohibitive for modern
compute-class Graphics Processing Units (GPUs).

3.4. Shell architecture
In typical FPGA programming environments, the user is
often responsible for developing not only the application
itself but also building and integrating system functions
required for data marshaling, host-to-FPGA communica-
tion, and inter-chip FPGA communication (if available).
System integration places a significant burden on the user
and can often exceed the effort needed to develop the appli-
cation itself. This development effort is often not portable to
other boards, making it difficult for applications to work on
future platforms.

Motivated by the need for user productivity and design
re-usability when targeting the Catapult fabric, we logically
divide all programmable logic into two partitions: the shell
and the role. The shell is a reusable portion of programma-
ble logic common across applications targeting the same
board—while the role is the application logic itself, restricted
to a large fixed region of the chip.

Figure 4 shows a block-level diagram of the shell archi-
tecture, consisting of PCIe with a custom DMA engine, two
DRAM controllers, four high-speed inter-FPGA links run-
ning the Serial Lite III protocol, the torus network router,
reconfiguration logic, single event upset (SEU) scrubbing,
and debugging interfaces.

Role designers access convenient and well-defined inter-
faces and capabilities in the shell (e.g., PCIe, DRAM, rout-
ing, etc.) without concern for managing system correctness.

The common shell also simplifies software by ensuring
that all applications support the same API functions for data
movement, reconfiguration, and health monitoring. For
example, we co-designed the PCIe core and DMA engine to
achieve very low latency, taking fewer than 10 µs for transfers

Third, all communication with these racks/servers goes
through the existing network, which (in a datacenter) is not
typically designed for the many-to-one communication pat-
terns to the specialized racks.

Finally, all communication between the portion of the
application running on the conventional server and the por-
tion in the FPGA requires going over the network, which, even
in the datacenter, can have high latency, unreliable deliv-
ery, and variable performance. This is particularly difficult
when traffic is exhibiting the many-to-one communication
pattern. The unreliable performance makes partitioning
the application between CPU and FPGA extremely difficult,
especially for latency-sensitive user-facing applications, and
reduces the likelihood that an application can be benefi-
cially offloaded to the reconfigurable fabric.

These issues diminish in severity with an increas-
ingly distributed design. At the extreme is the integrated
design—adding an FPGA to every server. In integrated
designs, an FPGA failure only impacts one server. All serv-
ers have the same cooling and power constraints. CPU to
FPGA communication does not need to go over the net-
work at all. And attaching the FPGA directly to the CPU
greatly diminishes communication latency and variance,
enabling finer-grain and more reliable offloading from the
CPU to the FPGA.

The homogeneous nature of the integrated design
enables additional benefits which are key to keeping the
designs cost-effective. Homogeneous computing resources
can be divided at arbitrary granularities, easing both short-
term and long-term provisioning of servers. Homogeneous
designs also improve economies of scale leading to more
cost-effective designs.

3.2. Scalability
On its own, integrating only one FPGA per server either lim-
its applications to those that can fit into the resources of a
single FPGA or suffers the same high-latency and unreliabil-
ity problems with communicating over the network as spe-
cialized racks and servers.

To overcome this shortcoming, we built a specialized
network, in addition to the existing Ethernet network, to
facilitate FPGA-to-FPGA communication. This specialized
network takes advantage of the low-latency, high-speed
serial I/O available in the FPGAs to create a two-dimensional
6 × 8 torus network. The torus topology balances routabil-
ity, resilience, and cabling complexity. Each inter-FPGA net-
work link supports 20 Gbits per second in both directions, at
sub-microsecond latency per hop, and requires only passive
copper cables with no additional networking costs such as
network interface cards or switches. Another HPC system,
Maxwell,3 takes a similar approach, but again targets HPC
workloads and constraints.

3.3. FPGA board design
Figure 3 shows the FPGA board and the server into which it
installs.16 The board incorporates a midrange Altera Stratix V
D5 FPGA,2 which we selected to balance the cost of deploying
thousands of FPGAs against the FPGA capacity. The board
also includes two banks of DDR3-1600 DRAM. The PCIe and

Figure 3. The FPGA board and the server into which it installs.
(a) Block diagram of the FPGA board. (b) Picture of the manufactured
board. (c) Diagram of the 1U, half-width server that hosts the FPGA
board. The air flows from left to right, leaving the FPGA in the
exhaust of both CPUs.

FPGA
QSPI
Flash

ECC SO-DIMM 2
8GB DDR3

(a) (b)

(c)

Airflow Airflow

research highlights

118 COMMUNICATIONS OF THE ACM | NOVEMBER 2016 | VOL. 59 | NO. 11

that adding the FPGA card and network cost less than 30% in
the total cost of ownership, including a limit of 10% for total
server power.

3.7. Datacenter deployment
To test this architecture on a critical production-scale data-
center service at scale, we manufactured and deployed the
fabric in a production datacenter. The deployment con-
sisted of a total of 1632 machines, that were organized into
in 17 server racks. Each server uses two 12-core Intel Xeon
CPUs, 64 Gbytes of DRAM, and two solid-state drives (SSDs)
in addition to four hard-disk drives. The machines have
a standard 10-Gbit Ethernet network card connected to a
48-port top-of-rack switch, which in turn connects to the
broader datacenter network. The FPGA daughter cards and
cable assemblies were tested at manufacture and again at
system integration. At deployment, we discovered that seven
cards (0.4%) had a hardware failure and that one of the 3264
links (0.03%) in the cable assemblies was defective. Since
then, after several months of operation, we have seen no
additional hardware failures.

4. APPLICATION CASE STUDY
To study the potential impact of the Catapult fabric, we
ported a significant fraction of Microsoft Bing’s web search
ranking engine into reconfigurable hardware. Aside from
being a representative datacenter-scale workload, Bing
consumes a significant fraction of the datacenter capacity
at Microsoft and is used to power a number of popular ser-
vices such as Yahoo! Search, Apple Siri, and search on XBox
One. As an interactive workload, Bing requires both low
latency and high bandwidth simultaneously. Furthermore,
Bing has strict resiliency requirements, is operationally com-
plex, and is programmed using tens of thousands of lines of
production-quality C++ code—making it an excellent candi-
date for gauging the viability of reconfigurable computing at
scale in a production environment.

In our case study, we devoted the majority of our efforts
to the Ranking portion of the Bing search engine, which
presented the largest opportunity for hardware accelera-
tion. Over 30K lines of C++ code were manually ported to the
Catapult fabric using the Verilog HDL. The implementation
generates results that are identical to software—even repro-
ducing known software bugs. As will be discussed in further
detail below, our implementation requires a total of seven
FPGAs to run a single instance of the service—plus one addi-
tional spare for redundancy. Without the availability of the
low-latency, high-bandwidth network that interconnects
multiple FPGAs, accelerating the Ranking service would not
have been feasible.

4.1. Accelerating Bing ranking using FPGAs
The Bing search engine is logically divided into multiple
software services spanning a large number of servers in the
datacenter. When a user’s search query is processed by the
Bing search engine, it is first submitted to a front-end cache
service that stores and delivers the results of previously sub-
mitted and popular queries. If the search query cannot be
located in the cache, it is forwarded to the Selection and

of 16 KB or less, and multithreading safety. Software devel-
opers use simple send and receive calls to transmit data, and
role designers simply read and write to the PCIe interface
FIFOs.

The shell consumes 23% of each FPGA, although extra
capacity can be obtained by discarding unused functions. If
desired, partial reconfiguration allows for dynamic switch-
ing between roles while the shell remains active—even
routing inter-FPGA traffic while a reconfiguration is taking
place—but it comes at the cost of reduced logic area and
RAM availability to the application.

3.5. Resiliency
At datacenter scales, providing resiliency in the face of
hardware failures is essential given that such failures occur
frequently, while demand for hardware availability is con-
sistently high. For instance, the fabric must stay available
in the presence of errors, failing hardware, reboots, and
updates to the implemented algorithm. FPGAs can poten-
tially corrupt their neighbors or crash the hosting servers
if care is not taken during reconfiguration. Our reconfigu-
rable fabric further requires a custom protocol to recon-
figure groups of FPGAs, remap services to recover from
failures, and report errors to the management software. In
addition, ECC is used on all external memories, and SEU
detection and correction is implemented on the FPGA’s
configuration memory.

3.6. Total cost of ownership
To balance the expected per-server performance gains ver-
sus the necessary increase in total cost of ownership, includ-
ing both increased capital costs and operating expenses,
we set aggressive power and cost goals to achieve a positive
ROI. We are unable to give cost numbers for our production
servers due to their business sensitivity; however, we can say

Figure 4. Components of the shell architecture.

West
SLIII

East
SLIII

South
SLIII

North
SLIII

x8 PCIe
Core

DMA
Engine

Config
Flash
(RSU)

DDR3 Core 1DDR3 Core 0

JTAG

LEDs

Temp
Sensors

Application

Shell

I2C

xcvr
reconfig

2 2 2 2

4 256 Mb
QSPI
Config
Flash

4 GB DDR3-1333
ECC SO-DIMM

4 GB DDR3-1333
ECC SO-DIMM

Host
CPU

72 72

Role

8

Inter-FPGA Router
SEU

NOVEMBER 2016 | VOL. 59 | NO. 11 | COMMUNICATIONS OF THE ACM 119

Our FPGA accelerator achieves a significant advantage
over software using a form of multiple-instruction, single-
data computation (MISD). In the FPGA, we instantiate 43
unique feature-extraction state machines that are used to
compute nearly 4500 features per document-query pair in
parallel. Each feature is an independent instruction stream,
and the data is a single document—hence the MISD par-
allelism—which the FPGA can exploit far more effectively
than CPUs and GPUs.

Each state machine reads each hit vector one item at a
time and performs a local calculation. For some features
that have similar computations, a single state machine is
responsible for calculating values for multiple features. As an
example, the NumberOfOccurences feature simply counts up
how many times each term (i.e., word) in the query appears.
At the end of a document, the state machine outputs all non-
zero feature values; for NumberOfOccurences, this could be
up to the number of terms in the query.

To support a large collection of state machines working
in parallel on the same input data at a high clock rate, we
organize the blocks into a tree-like hierarchy and replicate
each input several times. Figure 6 shows the logical organi-
zation of the FE hierarchy. Hit vectors are fed into a hit vector
processing state machine, which produces a series of control
and data tokens that the various feature state machines proc-
ess. Each state machine processes each hit vector at a rate of
one to two clock cycles per token. When a state machine fin-
ishes its computation, it emits one or more feature indexes
and values that are fed into the feature-gathering network
that coalesces the results from the 43 state machines into a
single output stream for the downstream FFE stages. Inputs
to FE are double buffered to increase throughput.

4.3. Free-Form expressions
FFEs are mathematical combinations of the features
extracted during the feature-extraction stage. FFEs give
developers a way to create hybrid features that are not con-
veniently specified as feature-extraction state machines.
There are typically thousands of FFEs, ranging from simple

Ranking services, which perform the actual computation
needed to generate search results.

The Selection service is responsible for accepting a user
query and selecting which of the billions of documents (e.g.,
web pages) on the Internet are worthwhile candidates. The
Ranking service further takes these selected documents and
runs them through a sophisticated ranking algorithm that
determines the order in which these documents should be
presented to the user.

The input to the Bing Ranking algorithm is a “hit vector”
that corresponds to a document-query pair arriving from the
upstream Selection service. A hit vector efficiently encodes
the locations in which words in a user’s query appear
within a given document (e.g., web page). The output of the
Ranking algorithm is a document “score,” which is used to
determine the position in which the document is presented
to the user.

Conceptually, the Bing ranking algorithm is divided into
three major stages: (1) Feature Extraction (FE), (2) Free-
Form Expressions (FFE), and (3) Machine-Learned Scoring
(MLS). Figure 5 illustrates a hardware processing pipeline
that allocates these stages to an eight-node FPGA pipeline:
one FPGA for FE, two for FFEs, one for a compression stage
that increases scoring engine efficiency, and three for MLS.
The eighth FPGA is a spare that allows the ring to be recon-
figured and rotated to keep the ranking pipeline alive in the
event of a failure.

4.2. Feature extraction
In FE, interesting characteristics of a given document are
dynamically extracted based on a user’s search query. As a
simple example, the NumberOfOccurences feature simply
counts up the number of times a query happens to appear
within a given document. In Bing Ranking, there are poten-
tially up to thousands of features that are computed for a
given document-query pair.

Figure 5. Mapping of ranking roles to FPGAs on the reconfigurable
fabric. Data is sent from each server to the queue manager. It is then
dispatched through the seven FPGA computation stages, and the
results are sent back to the source server.

Queue
Manager

FE

FFE 0

FFE 1

Compress

Scoring 0

Scoring 1

Scoring 2

Spare

ScoringRequests &
Responses

CPU 4

CPU 0

CPU 3

CPU 2

CPU 1CPU 7

CPU 6

CPU 5

Figure 6. The first stage of the ranking pipeline. Each hit vector is
streamed into the hit vector preprocessing state machine, split
into control and data tokens, and issued in parallel to the 43 unique
feature state machines. The feature-gathering network collects
generated feature and value pairs and forwards them to the next
pipeline stage.

Hit vector
preprocessing

FSM

Feature-
gathering
network

Feature Extraction FSMs

research highlights

120 COMMUNICATIONS OF THE ACM | NOVEMBER 2016 | VOL. 59 | NO. 11

4.5. Parallelism
To overcome the slower clock frequency of FPGAs rela-
tive to CPUs and GPUs, each of the scoring stages takes
advantage of two forms of parallelism that are not easily
handled by the other architectures. First, each processing
stage described here is configured with deep pipelines that
match the amount of pipeline parallelism available in the
application.

Second, FE and FFE exhibit multiple instruction single
data (MISD) parallelism, a cousin of the more commonly
known single instruction multiple data (SIMD) parallelism
exploited by GPUs and the vector processing units in CPUs.
A single source of data (the document) is operated on by a
very large number of independent instruction streams (fea-
ture extractors and free form expressions for FE and FFE,
respectively). SIMD architectures require the opposite—a
large number of independent data elements operated on by
the same instruction stream.

While SIMD architectures can efficiently process applica-
tions with MISD parallelism by batching many sets of data
together, this comes at the cost of increased latency, which
is often prohibitive in interactive cloud applications such as
web search. As such, web ranking is an example of a cloud
application that FPGAs can accelerate more effectively other
parallel processing architectures.

5. EVALUATION
We evaluated the Catapult fabric by deploying and mea-
suring the described Bing ranking engine on a bed of 1632
servers with FPGAs. Six hundred and seventy-two ran the
ranking service, and the other machines ran the selection
service to feed documents and queries to the ranking serv-
ers. We compare the average and tail latency distributions
of Bing’s production-level ranker running with and without
FPGAs on that bed.

User experience is dictated determined more by tail
latencies rather than average latencies—users care little
if their search results come back faster than expected, but
they become unhappy quickly if the results are slower than
expected. As such, we report performance at the latency of
the 95th percentile of queries—the time at which only 5%
of queries are slower. Performance results are very simi-
lar for average latency queries (50th percentile), and are
even better for higher tail latencies (99th percentile and
99.9th percentile), which have the biggest impact on user
experience.

Figure 8 illustrates how the FPGA-accelerated ranker
substantially reduces the end-to-end scoring latency and
improves throughput relative to software. There are two ways
to view the performance improvements on this graph. First,
for a fixed point on the x-axis, it shows the improvement in
throughput at that specified query latency. For example, at
1.0 (which represent the maximum acceptable latency to
Bing at the 95th percentile), the FPGA achieves a 95% gain in
scoring throughput relative to software.

Second, for a fixed point on the y-axis, it shows the
improvement in response time at a given throughput. At 1.0,
representing the average query load on a server, the FPGA
reduces query latency by 29%. The improvement in FPGA

(such as adding two features) to large and complex (with
thousands of operations including conditional execution
and complex floating-point operators such as ln, pow, and
fpdiv). FFEs vary greatly across models, making it impracti-
cal to synthesize customized datapaths for each expression.

One potential solution is to tile many off-the-shelf soft
processor cores (such as Nios II1), but these single-threaded
cores are inefficient at processing thousands of threads
with long-latency floating-point operations in the desired
amount of time per macropipeline stage (8 ms). Instead, we
developed a custom multicore processor with massive multi-
threading and long-latency operations in mind. The result is
the FFE processor shown in Figure 7. The FFE microarchi-
tecture is highly area efficient, letting us instantiate 60 cores
on a single FPGA.

The custom FFE processor has three key characteris-
tics that make it capable of executing all of the expressions
within the required deadline. First, each core supports four
simultaneous threads that arbitrate for functional units on
a cycle-by-cycle basis. When one thread is stalled on a long
operation such as a floating-point divide or natural log oper-
ation, other threads continue to make progress. All func-
tional units are fully pipelined, so any unit can accept a new
operation on each cycle.

Second, rather than fair thread scheduling, threads are
statically prioritized using a priority encoder. The assembler
maps the expressions with the longest expected latency to
thread slot 0 on all cores, then fills in slot 1 on all cores, and
so forth. Once all cores have one thread in each thread slot,
the remaining threads are appended to the end of previously
mapped threads, starting again at thread slot 0.

Third, the longest-latency expressions are split across
multiple FPGAs. An upstream FFE unit can perform part of
the computation and produce an intermediate result called
a metafeature. These metafeatures are sent to the down-
stream FFEs like any other feature, effectively replacing that
part of the expression computation with a simple feature
read.

4.4. Document scoring
The last stage of the pipeline is a machine-learned model
evaluator that takes the features and FFEs as inputs and pro-
duces a single floating-point score. This score is sent back
to the search software, and all of the resulting scores for the
query are sorted and returned to the user in sorted order as
the search results.

Figure 7. Free-form expressions (FFEs) placed and routed on an FPGA.
Sixty cores fit on a single FPGA.

Cluster
0

Core 0 Core 1 Core 2

Core 3 Core 4 Core 5

ComplexFST

O
ut

pu
t

NOVEMBER 2016 | VOL. 59 | NO. 11 | COMMUNICATIONS OF THE ACM 121

not exceed our 30% limit in an individual server’s total cost
of ownership, yielding a significant overall improvement in
system efficiency and TCO.

Reconfigurable fabrics based on FPGAs are not the
only accelerator platform that we considered. GPUs are
one option for accelerating large-scale workloads, and
when we first began we considered using GPUs. However,
the SIMD parallelism that GPUs handle so efficiently are
not a good match for latency-sensitive, but highly diver-
gent ranking stages (such as FE). In addition, the high
power consumption of GPUs meant that they couldn’t
be easily incorporated into conventional servers, which
only have power and cooling provisioning for a standard
25W PCIe card. Instead, they are likely more appropriate
for HPC environments rather than widespread datacen-
ter deployment.

We conclude that distributed reconfigurable fabrics are a
viable path forward as increases in server performance level
off, and will be crucial at the end of Moore’s law for contin-
ued cost and capability improvements in cloud computing.
Reconfigurability is a critical means by which hardware
acceleration can keep pace with the rapid rate of change in
datacenter services.

Going forward, the biggest obstacle to widespread
adoption of FPGAs in the datacenter is likely to be pro-
grammability. FPGA development still requires exten-
sive hand-coding in Register Transfer Level and manual
tuning. Yet we believe that incorporating careful HW/
SW co-design of custom ISAs such as those used in FE
and FFE, domain-specific languages such as OpenCL,
FPGA-targeted C-to-gates tools, and libraries of reusable
components and design patterns, will be sufficient to
permit high-value services to be productively targeted
to FPGAs. Longer term, improvements in FPGA archi-
tectures for computing, more integrated development
tools, and the design of languages and tools that con-
sider accelerator offload as a core functionality will be
necessary to increase the programmability of these fab-
rics beyond teams of specialists working with large-scale
service developers. Within 10–15 years, well past the end
of Moore’s Law, we believe that compilation to a combi-
nation of hardware and software will be commonplace.
Reconfigurable systems, such as the Catapult fabric pre-
sented here, will be necessary to support these hybrid
computation models.

Acknowledgments
Many people across many organizations contributed to this
system’s construction, and although they are too numerous
to list here individually, we thank our collaborators in
Microsoft Global Foundation Services, Bing, the Autopilot
team, and our colleagues at Altera and Quanta for their
excellent partnership and hard work. We thank Reetuparna
Das, Ofer Dekel, Alvy Lebeck, Neil Pittman, Karin Strauss,
and David Wood for their valuable feedback and contribu-
tions. We also thank Qi Lu, Harry Shum, Craig Mundie, Eric
Rudder, Dan Reed, Surajit Chaudhuri, Peter Lee, Gaurav
Sareen, Darryn Dieken, Darren Shakib, Chad Walters,
Kushagra Vaid, and Mark Shaw for their support.

scoring latency increases further at higher injection rates,
because the variability of software latency increases at
higher loads (due to contention in the CPU’s memory hier-
archy), whereas the FPGA’s performance remains stable.
This improved stability means that the FPGA is capable of
absorbing bursts of traffic better than software alone, which
may reduce the need for overprovisioning for bursty traffic.

Given that FPGAs can be used to improve both latency
and throughput, Bing could reap the benefits in many
ways. For example, for equivalent ranking capacity, fewer
servers can be purchased. At the current average query
rate, Bing could use roughly half the number of servers
and still achieve their performance targets while achiev-
ing massive cost savings. As another example, the faster
response time means that additional capabilities and fea-
tures can be added to the software and/or hardware stack
to improve the quality of searches without exceeding the
maximum allowed latency. Of course, a combination of
the two is also possible.

6. CONCLUSION
For many years, FPGAs have shown promise for accelerating
many computational tasks. Yet despite the huge potential,
they have not yet become mainstream in modern datacen-
ters. Our goal in building the Catapult fabric was to under-
stand what problems must be solved to operate FPGAs at
datacenter scale, and whether significant performance
improvements are achievable for large-scale production
workloads, especially workloads that change over the life-
time of the servers.

We found that efficiently mapping a significant portion
of a complex datacenter workload to FPGAs is both possible
and provides a significant ROI. We showed that an at-scale
deployment of FPGAs can increase ranking throughput in
a production search infrastructure by 95% at comparable
latency to a software-only solution, making possible both
cost savings with fewer servers needed and headroom for
improved search algorithms. We achieved this without
breaking the homogeneous architecture of data-center serv-
ers, and without increasing the server failure rate. The added
FPGA boards increased power consumption by only 10%, did

Figure 8. Achievable performance within a given latency bound.
The points on the x-axis at 1.0 shows the maximum sustained
throughputs on both the FPGA and software while satisfying Bing’s
target for latency at the 95th percentile.

0

1

2

3

4

5

0 0.5 1 1.5 2

Th
ro

ug
hp

ut
 (n

or
m

al
iz

ed
)

Latency (normalized to 95th percentile target)

95th percentile latency versus throughput

FPGA

Software
95% more

29% lower latency

throughput

research highlights

122 COMMUNICATIONS OF THE ACM | NOVEMBER 2016 | VOL. 59 | NO. 11

Andrew Putnam, Adrian M. Caulfield,
Eric S. Chung, Jeremy Fowers, Gopi
Prashanth Gopal, Jan Gray, Michael
Haselman, Scott Hauck, Stephen Heil,
Joo-Young Kim, Sitaram Lanka, Eric
Peterson, Simon Pope, Aaron Smith,
Jason Thong, Phillip Yi Xiao and Doug
Burger, Microsoft, Redmond, WA.

Derek Chiou, Microsoft and University of
Texas at Austin.

Kypros Constantinides, Amazon Web
Services, Boston, MA.

John Demme, Columbia University,
New York, NY.

Hadi Esmaeilzadeh, Georgia Institute of
Technology, Atlanta, GA.

Scott Hauck, University of Washington,
Seattle.

Amir Hormati, Google, Inc., Mountain
View, CA.

James Larus, École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne,
Switzerland.

References

 1. Altera. Nios II Processor Reference
Handbook, 13.1.0 edition, 2014.

 2. Altera. Stratix V Device Handbook,
14.01.10 edition, 2014.

 3. Baxter, R., Booth, S., Bull, M., Cawood,
G., Perry, J., Parsons, M., Simpson, A.,
Trew, A., Mccormick, A., Smart, G.,
Smart, R., Cantle, A., Chamberlain,
R., Genest, G. Maxwell – A 64 FPGA
Supercomputer. Eng. Lett. 16 (2008),
426–433, 2008.

 4. BEECube. BEE4 Hardware Platform,
1.0 edition, 2011.

 5. Blott, M., Vissers, K. Dataflow
architectures for 10Gbps line-rate
key-value stores. In HotChips 2013
(August 2013).

 6. Convey. The Convey HC-2 Computer,
conv-12-030.2 edition, 2012.

 7. Cray. Cray XD1 Datasheet, 1.3 edition,
2005.

 8. Dennard, R., Rideout, V., Bassous, E.,
LeBlanc, A. Design of ion-implanted
MOSFET’s with very small physical
dimensions. IEEE J. Solid-State Circ.
9, 5 (Oct. 1974), 256–268.

 9. Estlick, M., Leeser, M., Theiler, J.,
Szymanski, J.J. Algorithmic
transformations in the implementation
of K-means clustering on
reconfigurable hardware. In
Proceedings of the 2001 ACM/SIGDA
Ninth International Symposium on Field
Programmable Gate Arrays, FPGA’01
(New York, NY, USA, 2001). ACM.

 10. Gens, F. Worldwide and Regional
Public IT Cloud Services 2014–2018
Forecast (Oct. 2014).

 11. George, A., Lam, H., Stitt, G.
Novo-G: At the forefront of scalable
reconfigurable supercomputing.
Comput. Sci. Eng. 13, 1 (2011), 82–86.

 12. Hussain, H.M., Benkrid, K., Erdogan, A.T.,
Seker, H. Highly parameterized K-means
clustering on FPGAs: Comparative results
with GPPs and GPUs. In Proceedings
of the 2011 International Conference on
Reconfigurable Computing and FPGAs,
RECONFIG’11 (Washington, DC, USA,
2011). IEEE Computer Society.

 13. IBM. IBM PureData System for
Analytics N2001, WAD12353-
USEN-01 edition, 2013.

 14. Lavasani, M., Angepat, H., Chiou, D.
An FPGA-based in-line accelerator for
memcached. Comput. Arch. Lett. PP,
99 (2013), 1–1.

 15. Martin, A., Jamsek, D., Agarawal, K.
FPGA-based application acceleration:
Case study with GZIP compression/
decompression streaming engine.
In ICCAD Special Session 7C
(November 2013).

 16. Microsoft. How Microsoft Designs Its
Cloud-Scale Servers, 2014.

 17. Pell, O., Mencer, O. Surviving the end of
frequency scaling with reconfigurable
dataflow computing. SIGARCH
Comput. Archit. News 39, 4 (Dec. 2011).

 18. Showerman, M., Enos, J., Pant, A.,
Kindratenko, V., Steffen, C., Pennington,
R., Hwu, W. QP: A Heterogeneous
Multi-accelerator Cluster. 2009.

 19. SRC. MAPstation Systems, 70000 AH
edition, 2014.

 20. Yan, J., Zhao, Z.-X., Xu, N.-Y., Jin, X.,
Zhang, L.-T., Hsu, F.-H. Efficient
query processing for web search
engine with FPGAs. In Proceedings
of the 2012 IEEE 20th International
Symposium on Field-Programmable
Custom Computing Machines,
FCCM’12 (Washington, DC, USA,
2012). IEEE Computer Society. © 2016 ACM 0001-0782/16/11 $15.00

ACM Transactions on Parallel Computing
Solutions to Complex Issues in Parallelism
Editor-in-Chief: Phillip B. Gibbons, Intel Labs, Pittsburgh, USA

For further information or to submit your manuscript, visit topc.acm.org

Subscribe at www.acm.org/subscribe

ACM Transactions on Parallel Computing (TOPC) is a forum for novel
and innovative work on all aspects of parallel computing, including
foundational and theoretical aspects, systems, languages, architectures,
tools, and applications. It will address all classes of parallel-processing
platforms including concurrent, multithreaded, multicore, accelerated,
multiprocessor, clusters, and supercomputers.

Subject Areas

For further information or to submit your manuscript, visit topc.acm.org

Subscribe at www.acm.org/subscribe

