496 research outputs found

    'Unlicensed' natural killer cells dominate the response to cytomegalovirus infection.

    Get PDF
    Natural killer (NK) cells expressing inhibitory receptors that bind to self major histocompatibility complex (MHC) class I are 'licensed', or rendered functionally more responsive to stimulation, whereas 'unlicensed' NK cells lacking receptors for self MHC class I are hyporesponsive. Here we show that contrary to the licensing hypothesis, unlicensed NK cells were the main mediators of NK cell-mediated control of mouse cytomegalovirus infection in vivo. Depletion of unlicensed NK cells impaired control of viral titers, but depletion of licensed NK cells did not. The transfer of unlicensed NK cells was more protective than was the transfer of licensed NK cells. Signaling by the tyrosine phosphatase SHP-1 limited the proliferation of licensed NK cells but not that of unlicensed NK cells during infection. Thus, unlicensed NK cells are critical for protection against viral infection

    Homeostatic Control of Memory Cell Progenitors in the Natural Killer Cell Lineage

    Get PDF
    SummaryRecent studies have demonstrated that natural killer (NK) cells are able to undergo clonal expansion and contraction and to generate self-renewing memory cells after infection with mouse cytomegalovirus (MCMV). It is unclear whether all or only certain subsets preferentially contribute to the generation of memory NK cells. Here, we show that memory NK cells predominantly arise from killer cell lectin-like receptor G1 (KLRG1)-negative NK cell progenitors, whereas KLRG1-positive NK cells have limited capacity for expansion during infection with MCMV. Unexpectedly, the frequency of KLRG1-positive NK cells is significantly affected by the presence of T cells in the host and potentially by the host microbiota. Our findings demonstrate that excessive availability of interleukin (IL)-15 may erode the pool of memory progenitors, resulting in the decreased efficiency of memory generation in the NK cell lineage

    Modulation of Natural Killer Cell Cytotoxicity in Human Cytomegalovirus Infection: The Role of Endogenous Class I Major Histocompatibility Complex and a Viral Class I Homolog

    Get PDF
    Natural killer (NK) cells have been implicated in early immune responses against certain viruses, including cytomegalovirus (CMV). CMV causes downregulation of class I major histocompatibility complex (MHC) expression in infected cells; however, it has been proposed that a class I MHC homolog encoded by CMV, UL18, may act as a surrogate ligand to prevent NK cell lysis of CMV-infected cells. In this study, we examined the role of UL18 in NK cell recognition and lysis using fibroblasts infected with either wild-type or UL18 knockout CMV virus, and by using cell lines transfected with the UL18 gene. In both systems, the expression of UL18 resulted in the enhanced killing of target cells. We also show that the enhanced killing is due to both UL18-dependent and -independent mechanisms, and that the killer cell inhibitory receptors (KIRs) and CD94/NKG2A inhibitory receptors for MHC class I do not play a role in affecting susceptibility of CMV-infected fibroblasts to NK cell–mediated cytotoxicity

    A Role for NKG2D in NK Cell–Mediated Resistance to Poxvirus Disease

    Get PDF
    Ectromelia virus (ECTV) is an orthopoxvirus (OPV) that causes mousepox, the murine equivalent of human smallpox. C57BL/6 (B6) mice are naturally resistant to mousepox due to the concerted action of innate and adaptive immune responses. Previous studies have shown that natural killer (NK) cells are a component of innate immunity that is essential for the B6 mice resistance to mousepox. However, the mechanism of NK cell–mediated resistance to OPV disease remains undefined. Here we show that B6 mice resistance to mousepox requires the direct cytolytic function of NK cells, as well as their ability to boost the T cell response. Furthermore, we show that the activating receptor NKG2D is required for optimal NK cell–mediated resistance to disease and lethality. Together, our results have important implication towards the understanding of natural resistance to pathogenic viral infections

    Activation of Natural Killer Cells and Dendritic Cells upon Recognition of a Novel CD99-like Ligand by Paired Immunoglobulin-like Type 2 Receptor

    Get PDF
    Paired receptors that consist of highly related activating and inhibitory receptors are widely involved in the regulation of the immune system. Here, we report a mouse orthologue of the human activating paired immunoglobulin-like type 2 receptor (PILR) β, which was cloned from a cDNA library of natural killer (NK) cells based on its ability to associate with the DAP12 signaling adaptor protein. The activating PILRβ was expressed not only on NK cells but also on dendritic cells and macrophages. Furthermore, we have identified a novel CD99-like molecule as a ligand for the activating PILRβ and inhibitory PILRα receptors. Transcripts of PILR ligand are present in many tissues, including some T cell lines. Cells expressing the PILR ligand specifically activated NK cells and dendritic cells that express the activating PILRβ. Our findings reveal a new regulatory mechanism of innate immunity by PILR and its CD99-like ligand

    Killer Cell Inhibitory Receptor Recognition of Human Leukocyte Antigen (HLA) Class I Blocks Formation of a pp36/PLC-γ Signaling Complex in Human Natural Killer (NK) Cells

    Get PDF
    The killer cell inhibitory receptors (KIR) of human natural killer (NK) cells recognize human leukocyte antigen class I molecules and inhibit NK cell cytotoxicity through their interaction with protein tyrosine phosphatases (PTP). Here, we report that KIR recognition of class I ligands inhibits distal signaling events and ultimately NK cell cytotoxicity by blocking the association of an adaptor protein (pp36) with phospholipase C-γ in NK cells. In addition, we demonstrate that pp36 can serve as a substrate in vitro for the KIR-associated PTP, PTP-1C (also called SHP-1), and that recognition of class I partially disrupts tyrosine phosphorylation of NK cell proteins, providing evidence for KIR-induced phosphatase activity
    corecore