17 research outputs found

    The Origin of Life: Models and Data.

    Get PDF
    A general framework for conventional models of the origin of life (OOL) is the specification of a 'privileged function.' A privileged function is an extant biological function that is excised from its biological context, elevated in importance over other functions, and transported back in time to a primitive chemical or geological environment. In RNA or Clay Worlds, the privileged function is replication. In Metabolism-First Worlds, the privileged function is metabolism. In Thermal Vent Worlds, the privileged function is energy harvesting from chemical gradients. In Membrane Worlds, the privileged function is compartmentalization. In evaluating these models, we consider the contents and properties of the Universal Gene Set of life, which is the set of orthologous genes conserved throughout the tree of life and found in every living system. We also consider the components and properties of the Molecular Toolbox of Life, which contains twenty amino acids, eight nucleotides, glucose, polypeptide, polynucleotide, and several other components. OOL models based on privileged functions necessarily depend on "takeovers" to transition from previous genetic and catalytic systems to the extant DNA/RNA/protein system, requiring replacement of one Molecular Toolbox with another and of one Universal Gene Set with another. The observed robustness and contents of the Toolbox of Life and the Universal Gene Set over the last 3.7 billion years are thought to be post hoc phenomena. Once the takeover processes are acknowledged and are reasonably considered, the privileged function models are seen to be extremely complex with low predictive power. These models require indeterminacy and plasticity of biological and chemical processes

    The Origin of Life: Models and Data

    No full text

    Immune evasion mediated by tumor-derived lactate dehydrogenase induction of NKG2D ligands on myeloid cells in glioblastoma patients.

    No full text
    Myeloid cells are key regulators of the tumor microenvironment, governing local immune responses. Here we report that tumor-infiltrating myeloid cells and circulating monocytes in patients with glioblastoma multiforme (GBM) express ligands for activating the Natural killer group 2, member D (NKG2D) receptor, which cause down-regulation of NKG2D on natural killer (NK) cells. Tumor-infiltrating NK cells isolated from GBM patients fail to lyse NKG2D ligand-expressing tumor cells. We demonstrate that lactate dehydrogenase (LDH) isoform 5 secreted by glioblastoma cells induces NKG2D ligands on monocytes isolated from healthy individuals. Furthermore, sera from GBM patients contain elevated amounts of LDH, which correlate with expression of NKG2D ligands on their autologous circulating monocytes. NKG2D ligands also are present on circulating monocytes isolated from patients with breast, prostate, and hepatitis C virus-induced hepatocellular carcinomas. Together, these findings reveal a previously unidentified immune evasion strategy whereby tumors produce soluble factors that induce NKG2D ligands on myeloid cells, subverting antitumor immune responses

    History of the ribosome and the origin of translation

    No full text
    We present a molecular-level model for the origin and evolution of the translation system, using a 3D comparative method. In this model, the ribosome evolved by accretion, recursively adding expansion segments, iteratively growing, subsuming, and freezing the rRNA. Functions of expansion segments in the ancestral ribosome are assigned by correspondence with their functions in the extant ribosome. The model explains the evolution of the large ribosomal subunit, the small ribosomal subunit, tRNA, and mRNA. Prokaryotic ribosomes evolved in six phases, sequentially acquiring capabilities for RNA folding, catalysis, subunit association, correlated evolution, decoding, energy-driven translocation, and surface proteinization. Two additional phases exclusive to eukaryotes led to tentacle-like rRNA expansions. In this model, ribosomal proteinization was a driving force for the broad adoption of proteins in other biological processes. The exit tunnel was clearly a central theme of all phases of ribosomal evolution and was continuously extended and rigidified. In the primitive noncoding ribosome, proto-mRNA and the small ribosomal subunit acted as cofactors, positioning the activated ends of tRNAs within the peptidyl transferase center. This association linked the evolution of the large and small ribosomal subunits, proto-mRNA, and tRNA
    corecore