230 research outputs found

    The Ontogenetic Osteohistology of Tenontosaurus tilletti

    Get PDF
    Tenontosaurus tilletti is an ornithopod dinosaur known from the Early Cretaceous (Aptian-Albian) Cloverly and Antlers formations of the Western United States. It is represented by a large number of specimens spanning a number of ontogenetic stages, and these specimens have been collected across a wide geographic range (from central Montana to southern Oklahoma). Here I describe the long bone histology of T. tilletti and discuss histological variation at the individual, ontogenetic and geographic levels. The ontogenetic pattern of bone histology in T. tilletti is similar to that of other dinosaurs, reflecting extremely rapid growth early in life, and sustained rapid growth through sub-adult ontogeny. But unlike other iguanodontians, this dinosaur shows an extended multi-year period of slow growth as skeletal maturity approached. Evidence of termination of growth (e.g., an external fundamental system) is observed in only the largest individuals, although other histological signals in only slightly smaller specimens suggest a substantial slowing of growth later in life. Histological differences in the amount of remodeling and the number of lines of arrested growth varied among elements within individuals, but bone histology was conservative across sampled individuals of the species, despite known paleoenvironmental differences between the Antlers and Cloverly formations. The bone histology of T. tilletti indicates a much slower growth trajectory than observed for other iguanodontians (e.g., hadrosaurids), suggesting that those taxa reached much larger sizes than Tenontosaurus in a shorter time

    Modeling Parkinson’s Disease Using Induced Pluripotent Stem Cells

    Get PDF
    Our understanding of the underlying molecular mechanism of Parkinson’s disease (PD) is hampered by a lack of access to affected human dopaminergic (DA) neurons on which to base experimental research. Fortunately, the recent development of a PD disease model using induced pluripotent stem cells (iPSCs) provides access to cell types that were previously unobtainable in sufficient quantity or quality, and presents exciting promises for the elucidation of PD etiology and the development of potential therapeutics. To more effectively model PD, we generated two patient-derived iPSC lines: a line carrying a homozygous p.G2019S mutation in the leucine-rich repeat kinase 2 (LRRK2) gene and another carrying a full gene triplication of the α-synuclein encoding gene, SNCA. We demonstrated that these PD-linked pluripotent lines were able to differentiate into DA neurons and that these neurons exhibited increased expression of key oxidative stress response genes and α-synuclein protein. Moreover, when compared to wild-type DA neurons, LRRK2-G2019S iPSC-derived DA neurons were more sensitive to caspase-3 activation caused by exposure to hydrogen peroxide, MG-132, and 6-hydroxydopamine. In addition, SNCA-triplication iPSC-derived DA neurons formed early ubiquitin-positive puncta and were more sensitive to peak toxicity from hydrogen peroxide-induced stress. These aforementioned findings suggest that LRRK2-G2019S and SNCA-triplication iPSC-derived DA neurons exhibit early phenotypes linked to PD. Given the high penetrance of the homozygous LRRK2 mutation, the expression of wild-type α-synuclein protein in the SNCA-triplication line, and the clinical resemblance of patients afflicted with these familial disorders to sporadic PD patients, these iPSC-derived neurons may be unique and valuable models for disease diagnostics and development of novel pharmacological agents for alleviation of relevant disease phenotypes

    Prevalence of anaemia in older persons: systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ageing populations will impact on healthcare provision, especially since extra years are not necessarily spent in good health. It is important to identify and understand the significance of common medical problems in older people. Anaemia may be one such problem. We report on the prevalence of anaemia in cohorts of elderly people in the general population. The presence of anaemia is associated with a worse prognosis for both morbidity and mortality.</p> <p>Methods</p> <p>Electronic searching and reference lists of published reports were used to identify studies that reported on prevalence of anaemia in cohorts of at least 100 individuals predominantly aged 65 years and over living in developed countries, together with criteria used to define anaemia. Studies of anaemia prevalence in specific disease groups or published before 1980 were excluded. Prevalence data for the entire cohort, for men and women separately and for different age bands were extracted.</p> <p>Results</p> <p>Forty-five studies contributed data. Thirty-four studies (n = 85,409) used WHO criteria to define anaemia. The weighted mean prevalence was 17% (3–50%) overall, and 12% (3–25%) in studies based in the community (27, n = 69,975), 47% (31–50%) in nursing homes (3, n = 1481), and 40% (40–72%) in hospital admissions (4, n = 13,953). Anaemia prevalence increased with age, was slightly higher in men than women, and was higher in black people than white. Most individuals classified as anaemic using WHO criteria were only mildly anaemic.</p> <p>Conclusion</p> <p>Anaemia, as defined by WHO criteria, is common in older people living in the community and particularly common in nursing home residents and hospital admissions. Predicted demographic changes underline the need to understand more about anaemia in older people.</p

    New Information on the Cranial Anatomy of Acrocanthosaurus atokensis and Its Implications for the Phylogeny of Allosauroidea (Dinosauria: Theropoda)

    Get PDF
    Allosauroidea has a contentious taxonomic and systematic history. Within this group of theropod dinosaurs, considerable debate has surrounded the phylogenetic position of the large-bodied allosauroid Acrocanthosaurus atokensis from the Lower Cretaceous Antlers Formation of North America. Several prior analyses recover Acrocanthosaurus atokensis as sister taxon to the smaller-bodied Allosaurus fragilis known from North America and Europe, and others nest Acrocanthosaurus atokensis within Carcharodontosauridae, a large-bodied group of allosauroids that attained a cosmopolitan distribution during the Early Cretaceous.Re-evaluation of a well-preserved skull of Acrocanthosaurus atokensis (NCSM 14345) provides new information regarding the palatal complex and inner surfaces of the skull and mandible. Previously inaccessible internal views and articular surfaces of nearly every element of the skull are described. Twenty-four new morphological characters are identified as variable in Allosauroidea, combined with 153 previously published characters, and evaluated for eighteen terminal taxa. Systematic analysis of this dataset recovers a single most parsimonious topology placing Acrocanthosaurus atokensis as a member of Allosauroidea, in agreement with several recent analyses that nest the taxon well within Carcharodontosauridae.A revised diagnosis of Acrocanthosaurus atokensis finds that the species is distinguished by four primary characters, including: presence of a knob on the lateral surangular shelf; enlarged posterior surangular foramen; supraoccipital protruding as a double-boss posterior to the nuchal crest; and pneumatic recess within the medial surface of the quadrate. Furthermore, the recovered phylogeny more closely agrees with the stratigraphic record than hypotheses that place Acrocanthosaurus atokensis as more closely related to Allosaurus fragilis. Fitch optimization of body size is also more consistent with the placement of Acrocanthosaurus atokensis within a clade of larger carcharodontosaurid taxa than with smaller-bodied taxa near the base of Allosauroidea. This placement of Acrocanthosaurus atokensis supports previous hypotheses of a global carcharodontosaurid radiation during the Early Cretaceous

    Passive Immunization Reduces Behavioral and Neuropathological Deficits in an Alpha-Synuclein Transgenic Model of Lewy Body Disease

    Get PDF
    Dementia with Lewy bodies (DLB) and Parkinson's Disease (PD) are common causes of motor and cognitive deficits and are associated with the abnormal accumulation of alpha-synuclein (α-syn). This study investigated whether passive immunization with a novel monoclonal α-syn antibody (9E4) against the C-terminus (CT) of α-syn was able to cross into the CNS and ameliorate the deficits associated with α-syn accumulation. In this study we demonstrate that 9E4 was effective at reducing behavioral deficits in the water maze, moreover, immunization with 9E4 reduced the accumulation of calpain-cleaved α-syn in axons and synapses and the associated neurodegenerative deficits. In vivo studies demonstrated that 9E4 traffics into the CNS, binds to cells that display α-syn accumulation and promotes α-syn clearance via the lysosomal pathway. These results suggest that passive immunization with monoclonal antibodies against the CT of α-syn may be of therapeutic relevance in patients with PD and DLB

    Nitrated α–Synuclein Immunity Accelerates Degeneration of Nigral Dopaminergic Neurons

    Get PDF
    The neuropathology of Parkinson's disease (PD) includes loss of dopaminergic neurons in the substantia nigra, nitrated alpha-synuclein (N-alpha-Syn) enriched intraneuronal inclusions or Lewy bodies and neuroinflammation. While the contribution of innate microglial inflammatory activities to disease are known, evidence for how adaptive immune mechanisms may affect the course of PD remains obscure. We reasoned that PD-associated oxidative protein modifications create novel antigenic epitopes capable of peripheral adaptive T cell responses that could affect nigrostriatal degeneration.Nitrotyrosine (NT)-modified alpha-Syn was detected readily in cervical lymph nodes (CLN) from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxicated mice. Antigen-presenting cells within the CLN showed increased surface expression of major histocompatibility complex class II, initiating the molecular machinery necessary for efficient antigen presentation. MPTP-treated mice produced antibodies to native and nitrated alpha-Syn. Mice immunized with the NT-modified C-terminal tail fragment of alpha-Syn, but not native protein, generated robust T cell proliferative and pro-inflammatory secretory responses specific only for the modified antigen. T cells generated against the nitrated epitope do not respond to the unmodified protein. Mice deficient in T and B lymphocytes were resistant to MPTP-induced neurodegeneration. Transfer of T cells from mice immunized with N-alpha-Syn led to a robust neuroinflammatory response with accelerated dopaminergic cell loss.These data show that NT modifications within alpha-Syn, can bypass or break immunological tolerance and activate peripheral leukocytes in draining lymphoid tissue. A novel mechanism for disease is made in that NT modifications in alpha-Syn induce adaptive immune responses that exacerbate PD pathobiology. These results have implications for both the pathogenesis and treatment of this disabling neurodegenerative disease
    • …
    corecore